
1.2 Polynômes minimal et caractéristique d’un endomorphisme

Soit u un endomorphisme de E. Soit Iu l’ensemble des polynômes P de K[X]tels que P(u) = 0. Il  est clair que Iu est un
idéal de K[X] (appelé idéal annulateur de u); K[X] étant un anneau principal (voir « anneaux et corps ») il existe un
polynôme µ engendrant Iu (i.e Iu = (µ)). De plus µ est unique si on le normalise (coefficient dominant égal à 1).

Définition : on appelle polynôme minimal de u l’unique polynôme µ normalisé tel que Iu = (µ).

Remarques :

L(E) étant de dimension finie (n2) la famille (IdE, u, ..., 
2nu ) est liée : il existe donc une combinaison linéaire nulle de

ses éléments qui est non triviale. Par conséquent Iu ≠ (0) et a donc 1 ≤  d°µ ≤  n2 (en fait on a d°P ≤ n : voir (i) de
la proposition suivante).

µ est caractérisé par :

 1/ µ est unitaire;

2/ µ(u) = 0;

3/ Pour tout polynôme P on a : P(u) = 0  ⇒  P multiple de µ.

Définitions : le polynôme caractéristique d’une matrice M est le polynôme χM à coefficients dans K défini par :

χM(X) = dét(XIn - M)  (où XIn - M est une matrice à coefficients dans l’anneau K[X]).

Le polynôme caractéristique d’un endomorphisme u de E est le polynôme caractéristique d’une de ses matrices dans
une base de E (ce polynôme ne dépend pas du choix de cette base). On le note χu ou χ s’il n’y a pas d’ambiguïté.

On rappelle que χ est un polynôme unitaire de degré n.

Propriétés : Soit u un endomorphisme de E.

(i) Le polynôme minimal µ de u divise son polynôme caractéristique χ;

(ii) Toute racine de χ est aussi racine de µ ;

(iii) Si le corps K est algébriquement clos (par exemple K = c) et si χ(X) = ∏
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)( βλ  avec 0 < βk ≤ αk.

(iv) u est diagonalisable ssi µ n’a que des racines simples.

La propriété (i) peut aussi s’écrire : χ(u) = 0 autrement dit un endomorphisme vérifie son polynôme caractéristique
(théorème de Cayley-Hamilton) : voir une démonstration à l’exercice 11.

Le (i) montre que d°µ ≤ d°χ = n

Dans le (iii) λ1, ... , λp sont les valeurs propres de u.

Démonstration :

(i) D’après le théorème de Cayley-Hamilton on a χ(u) = 0 donc µ divise χ.

(ii) Dire que λ est racine de χ signifie que λ est valeur propre de u i.e qu’il existe un vecteur non nul x tel que
u(x) = λx. Pour tout polynôme P on voit que P(u)(x) = P(λ)x. En prenant P = µ  il vient µ(λ)x = 0 soit µ(λ) = 0 car x
est non nul.

(iii) D’après le (i) et le (ii) les polynômes χ et µ ont les même racines. Comme µ divise χ on a le résultat voulu.

(iv) Condition nécessaire : si u est diagonalisable il existe une base B = (e1, e2, ... , en) dans laquelle la matrice de u est
une matrice diagonale; si λ1, λ2, ... , λp sont les élément distincts deux à deux de la diagonale et si

P = (X - λ1) (X - λ2) ... (X - λp) alors P(u) = 0 puisque chaque vecteur de la base B est annulé par u - λkIdE pour un k de
{1, ... , p}. Par conséquent µ divise P et comme P n’a que des racines simples µ aussi.



Condition suffisante : si µ = (X - λ1) (X - λ2) ... (X - λp) avec les λk distincts deux à deux on a, d’après le théorème de
décomposition des noyaux E = Ker(u - λ1Id) ⊕ Ker (u - λ2Id) ⊕ ... ⊕ Ker (u - λpId) donc u est diagonalisable.

Exercice 2

Soit K un corps algébriquement clos et f un endomorphisme de E tel que f 2 soit diagonalisable. Montrer que :

f diagonalisable   ⇔  Ker f = Ker(f 2).

(Utiliser le théorème de décomposition des noyaux).

Exercice 3

Combien de solutions dans M3(c) l’équation M2 = 
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Exercice 4

1°/ Supposons que E = E1 + ... + Ep où les Ek sont des sous-espaces vectoriels stables par u. Soit µk le polynôme
minimal de la restriction u/Ek de u à Ek (1 ≤ k ≤ p). Montrer que µ = ppmc(µk) (et µ unitaire).

2°/ Si la somme précédente est directe et si χk est le polynôme caractéristique de u/Ek alors : χ = ∏
=
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Exemple : calculer le polynôme minimal de la matrice M =  

− − −

− − −

− − −

− − −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

7 16 7 4

9 3 4 7

7 4 7 16

4 7 9 3

.

(Soit (e1, e2, e3, e4) la base canonique de r4 et f l’endomorphisme canoniquement associé à M. En calculant f(e1) et
f 2(e1) on constate qu’on a la relation de dépendance : f 2(e1) +10f(e1) + 100e1 = 0. Le polynôme P = X2 + 10X + 100
annule donc la restriction de f au sous-espace vectoriel (de dimension 2) E1 =  <e1, f(e1)> engendré par e1 et f(e1). On
vérifie que P(u)(e2) = 0 donc P annule la restriction de f au sous-espace vectoriel E2 = <e2, f(e2), f

2(e2), ...>. Comme
f(e2) n’est pas colinéaire à e2 ce sous-espace vectoriel est de dimension au moins 2. On a donc dim(E1 ∩ E2) = 0 ou 1.
Si dim(E1 ∩ E2) = 1 alors le polynôme minimal de la restriction de f à E1 ∩ E2 serait un polynôme de degré 1 qui
diviserait P ce qui est absurde car P est irréductible dans r[X]. Par conséquent on a dim(E1 ∩ E2) = 0 et r4 = E1 ⊕ E2.
Le polynôme P, irréductible, unitaire et annulant u est donc le polynôme minimal de u.)

Exercice 5

Calculer le polynôme minimal des matrices A = 
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. En déduire An et Bn pour n ∈ n.
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