1.2 Polynémes minimal et caractéristique d’un endomorphisme

Soit u un endomorphisme de E. Sait I, I’ ensemble des polynémes P de K[ X]tels que P(u) = 0. Il est clair quel, est un
idéal de K[X] (appelé idéal annulateur de u); K[X] étant un anneau principal (voir « anneaux et corps ») il existe un
polyndme . engendrant |, (i.e 1, = (w)). De plus x est unique si on le normalise (coefficient dominant égal a1).

| Définition : on appelle polynéme minimal de u |” unique polynéme p normalisé tel que I, = (u).
Remarqgues:

L(E) étant de dimension finie (n?) lafamille (Idg, u, ..., u™ ) est liée : il existe donc une combinaison linéaire nulle de
ses ééments qui est non triviale. Par conséquent |, = (0) etadonc 1 < d°x < n?(enfaitonad°P < n:voir (i) de
la proposition suivante).

M est caractérise par :
1/ p est unitaire;
2/ p(u) =0;
3/ Pour tout polynébmeP ona: P(u) =0 = P multiplede 1.
Définitions: le polynéme caractéristique d’ une matrice M est le polyndme yy a coefficients dans K défini par :
am(X) = dét(Xl, - M) (ot Xl, - M est une matrice a coefficients dans |’ anneau K [X]).

L e polynéme caractéristique d’ un endomorphisme u de E est le polyndme caractéristique d’ une de ses matrices dans
une base de E (ce polyndme ne dépend pas du choix de cette base). On le note y, ou y S'il n’y apas d ambiguité.

On rappelle que y est un polynéme unitaire de degré n.
Propriétés: Soit u un endomorphisme de E.
(i) Le polynéme minimal « de u divise son polyndme caractéristique y;
(ii) Touteracine de y est auss racinede y;
p
(iii) Si le corps K est algébriquement clos (par exempleK = C) et si (X) = H(X -4)% (x>0 et les Adistincts
k=0

P
deux adeux) alors x(X) = [J(X - 2,)"* avec0< f < o
k=0

(iv) u est diagonalisable ssi 12 n’aque des racines simples.

La propriété (i) peut aussi s écrire : x(u) = 0 autrement dit un endomor phisme vérifie son polyndéme caractéristique
(théoréme de Cayley-Hamilton) : voir une démonstration &I’ exercice 11.

Le(i) montrequed°u < d°y=n

Dansle (iii) 44, ..., A4, sont les valeurs propres de u.

Démonstration :

(i) D’ apres le théoréme de Cayley-Hamilton on a y(u) = 0 donc x divise y.

(ii) Dire que A est racine de y signifie que A4 est valeur proprede ui.e qu’il existe un vecteur non nul x tel que

u(x) = Ax. Pour tout polyndme P on voit que P(u)(x) = P(4)x. En prenant P = g il vient x(A2)x = 0 soit (1) = 0 car X
est non nul.

(iii) D’ apréesle (i) et le (ii) les polyndmes y et 1 ont les méme racines. Comme y divise y on ale résultat voulu.

(iv) Condition nécessaire: si u est diagonalisableil existe unebase B = (ey, &, ... , €,) danslaguelle lamatrice de u est
une matrice diagonale; S A1, A, ... , 4, sont les élément distincts deux adeux deladiagonale et si

P=(X-41) (X-4) ... (X- 4,) dors P(u) = 0 puisgue chaque vecteur de |a base B est annulé par u - Al dg pour un k de
{1, ..., p}. Par conséquent x divise P et comme P n’a que des racines simples x aussi.



Condition suffisante: si p = (X - A1) (X - A2) ... (X - 4p) avec les A distincts deux adeux on a, d’ aprés le théoréme de
décomposition des noyaux E = Ker(u - 441d) ® Ker (u- 2,1d) @ ... ® Ker (u - A,1d) donc u est diagonalisable.

Exercice 2

Soit K un corps algébriquement clos et f un endomorphisme de E tel que f % soit diagonalisable. Montrer que :
f diagonalisable < Ker f=Ker(f ?).

(Utiliser le théoréme de décomposition des noyaux).
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Combien de solutions dans Ms(C) I’ équation M = kl

1°/ Supposons que E = E; + ... + E, oul les E, sont des sous-espaces vectoriels stables par u. Soit z4 le polynéme
minimal de larestriction UW/E, deu aE, (1 < k < p). Montrer que x = ppmc(u) (et £ unitaire).

P
2°/ Si lasomme précédente est directe et si y; est le polyndme caractéristique de U/E, alors: y = H X -
k=1

(<7 -16 7 —4)

|9 -3 -4 —7|

Exemple: calculer le polyndme minimal delamatrice M = | 7 4 7 _1gl

L—4 7 9 —3J

(Soit (ey, &, €3, &) labase canonique de R* et f I’ endomorphisme canoniquement associé & M. En calculant f(e,) et

f (e,) on constate qu’ on alarelation de dépendance : f %(e;) +10f(e;) + 100e; = 0. Le polynéme P = X2 + 10X + 100
annule donc larestriction de f au sous-espace vectoriel (de dimension 2) E; = <e,, f(e))> engendré par e, et f(e,). On
vérifie que P(u)(e,) = 0 donc P annule larestriction de f au sous-espace vectoriel E, = <e,, (), f4(ey), ...>. Comme
f(e) N'est pas colinéaire a e, ce sous-espace vectoriel est de dimension au moins 2. Onadonc dim(E; n E;) =0ou 1.
Si dim(E; N E,) = 1 dorsle polyndbme minimal de larestriction def aE; m E; serait un polynéme de degré 1 qui
diviserait P ce qui est absurde car P est irréductible dans IR[X]. Par conséquent on adim(E; N E;) =0 et R* = E; @ E.
Le polynéme P, irréductible, unitaire et annulant u est donc le polyndme minimal de u.)
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