
1.4 Décomposition de E en somme directe de sous-espaces caractéristiques

Théorème : Soit u un endomorphisme de E tel que son polynôme caractéristique s’écrive χ(X) = ∏
=

−
p

k
k

kX
1

)( αλ ,
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)( βλ  (avec 0 < βk ≤ αk) (voir 1.2). On pose :

Nk = k

Eku αλ )Id(Ker − . Alors :

(i) E est somme directe des Nk (1 ≤ k ≤ p); 

(ii) Nk =  k

Eku βλ )Id(Ker − ;

(iii) λk est la seule valeur propre de la restriction u/Nk de u à Nk;

(iv) Dim Nk = αk;

(v) la restriction vk = (u - λkId)/Nk de u - λkId à Nk est nilpotente d’indice βk (1 ≤ k ≤ p); 

Les sous-espaces vectoriels Nk = k

Eku αλ )Id(Ker − = k

Eku βλ )Id(Ker −  sont appelés sous-espaces caractéristiques (ou
spectraux) de u.

Démonstration :

(i) Comme χ(u) = 0 il résulte du théorème de décomposition des noyaux que E est somme directe des Nk;

(ii) comme µ(u) = 0 on a pour les même raisons E = 1Ker( Id ) ... Ker( Id ) r
k E k Eu uβ βλ λ− ⊕ ⊕ − . Mais
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Eku βλ )Id(Ker − = dim Nk et  k
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(iii) soit λ une valeur propre de u/Nk . Il existe x ∈ Nk - {0} tel que u(x) = λx. Comme ( )Id ( )k
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(iv) posons dk = dim Nk. D’après l’exercice 4 2°/ on a χ = ∏
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χ  où χk est le polynôme caractéristique de u/Nk.
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(v) d ’après (ii) k
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βν  = 0. Supposons que pour un j ∈ {1; ... ; p}  on ait 1−j
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Remarques :

Le théorème précédent s’applique à tout endomorphisme u d’un espace vectoriel sur un corps K algébriquement clos
(c par exemple);

Dans les conditions du théorème précédent, si on pose Ek = Ker(u - λkIdE), on retrouve le résultat : u est diagonalisable
ssi dim Ek = αk  pour 1 ≤ k ≤ p.

 (en effet u est diagonalisable ssi βk = 1 pour 1 ≤ k ≤ p (proposition (iv) du 1.2) donc Nk =  Ker(u - λkIdE) = Ek = sous-
espace propre relatif à la valeur propre λk donc dim Ek = αk. Réciproquement si dim Ek = αk alors Ek = Nk (car on a
toujours Ek ⊂ Nk) donc E est somme directe des Nk i.e u est diagonalisable).



Dans une base adaptée à la décomposition de E en somme directe des Nk la matrice de u est une matrice diagonale de

matrices  :  
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  où MK = matrice de la restriction u /Nk de u à Nk.

Exercice 9

1°/ Soit M une matrice dont le polynôme caractéristique χ(X) = 
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indépendantes dans Mn(n) telles que pour tout q de n on a :
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Si M 'est pas inversible et λj est la valeur propre nulle  la relation précédente est valable pour tout entier naturel q
supérieur ou égal à βj.

2°/ Applications aux suites récurrentes :

s étant un entier naturel non nul, et αi (0 ≤ i ≤  s-1) s scalaires, avec α0 non nul, soit (S') l'ensemble des suites (xn) à
valeurs dans K vérifiant la relation de récurrence :

xn+s = α0xn +α1xn+1 + ... + αs-1xn+s-1.

Soit l'équation P(r) = rs - 
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L'ensemble (S') est un espace vectoriel de dimension s. Si le polynôme P est scindé et si λ1, ... , λq sont les racines de P
de multiplicités respectives α1, ... , αq une base de (S') est ( )
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Etant donné (y0, ... , ys-1) ∈ Kp il existe un unique élément de (S') tel que x0 = y0, ... , xs-1 = ys-1.

(Réf. : Ramis tome 1, p 415 à 417).

3°/ Autre application : convergence de Aq

Soit A une matrice (n, n) à coefficients complexes. On pose ρ(A) = λ
Sp(A)∈

Max   (appelé rayon spectral de A). Montrer que

:  (Aq converge vers 0   ssi   ρ(A) < 1).

Le paragraphe suivant donne un autre exemple d’application du théorème précédent.

https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex9.pdf

