1.4 Décomposition de E en somme directe de sous-espaces caractéristiques
p
Théoréme: Soit u un endomorphisme de E tel que son polyndme caractéristique s écrive y(X) = H(X -4)%,
k=1

oy > 0 et les A distincts deux a deux (autrement dit y est scindé); alors son polyndme minimal est de laforme
p

wX) = TJ(X=24)" (avecO< S < ay) (voir 1.2). On pose:
kel
N = Ker(u—4,1d.)* . Alors:
(i) E est somme directe des Ny (1 < k < p);
(i) Ng= Ker(u—A,1d.)%;
(iii) A est laseule valeur propre de larestriction u/Ny de u a Ny;
(iv) Dim N = o
(v) larestriction v = (u - A4ld)/Nx deu - A4ld a N est nilpotente d'indice £k (1 < k < p);
L es sous-espaces vectoriels N, = Ker(u—4,1d.)* = Ker(u—4,1d.)” sont appelés sous-espaces caractéristiques (ou
spectraux) de u.
Démonstration :
(i) Comme y(u) = 0l résulte du théoreme de décomposition des noyaux que E est somme directe des N;
(ii) comme x(u) = 0 on apour lesméme raisonsE = Ker(u—A4,1d.)A® ... @ Ker(u-4/ld.)” . Mais
Ker(u—A,1d.)”* = Ngpour 1 < k < pdoncdim Ker(u—A,1d.)* < dim N, D’autre part

p p
n= > dimKer(u—-,1d.)" = > dimN, par conséquent dim Ker(u—A,ld.)* =dimNcet Ker(u—1,1d.)* =N
k=1 k=1

(iii) soit 2 une valeur propre de U/N . Il existex € N - {0} tel que u(x) = Ax. Comme (u— 4 1d; )™ (x) = 0l vient
(1 -4 )™ x=0, soit (21— 4, )" = 0 (puisque x est non nul) ou & = Ay;

p
(iv) posons di = dim Ny. D’ aprés |’ exercice4 2°/ ona y = H X« OUyx est le polyndme caractéristique de u/Ny.

k=1

P
D’ aprésle (jii) xc= (X - 4,)* soity = [](X - 4,)* doncd=axpour 1<k < p;
k=1

(v) d’aprés (i) v, =0. Supposonsque pour unj € {1; ...; p} onait vj”’fl =0. Alorsle polynéme

P
(X=4)"TT(X=4.)* annulerait u puisqu’il annule wNy pour 1 < k < petdonc [J(X -4,)* neserait pasle

K k=1

polyndme minimal de u.

Remarques:

L e théoréme précédent s applique a tout endomorphisme u d' un espace vectoriel sur un corps K algébriquement clos
(C par exemple);

Dans les conditions du théoréme précédent, si on pose E, = Ker(u - Al dg), on retrouve le résultat : u est diagonalisable
ssidmEg= o pour L<k<p.

(en effet u est diagonalisable ssi =1 pour 1 < k < p (proposition (iv) du 1.2) donc Ny = Ker(u - 4ldg) = E¢ = sous-

espace propre relatif alavaleur propre A, donc dim Ex = ax. Réciproquement si dim Ey = o alors Ex = N¢ (car on a
toujours Ex = Ny) donc E est somme directe des N i.e u est diagonalisable).



Dans une base adaptée a la décomposition de E en somme directe des Ny la matrice de u est une matrice diagonale de
M 1
matrices : ou M = matrice de larestriction u /N, de u a N,.

Exercice9
p

1°/ Soit M une matrice dont |le polyndme caractéristique y(X) = H (X = 2,)*“ est scindé. Soit

k=1

p
H(X) = H(X — 2,)" sont polyndme minimal. Montrer que, s M est inversible, il existe des matrices A x
k=1
indépendantes dans M,,(n) telles que pour tout g de IN on a:
p g .
M= D 2 D a“Ay |-
i= k=0

Si M 'est pasinversible et 4; est lavaleur propre nulle larelation précédente est valable pour tout entier naturel q
supérieur ou €gal a 3.
2°/ Applications aux suitesrécurrentes:

s étant un entier naturel non nul, et ; (0 < i < s1) sscalaires, avec ap non nul, soit (S) I'ensemble des suites (x,) a
valeurs dans K vérifiant larelation de récurrence :

Xnts = OoXn T arXne1 T oo + As1Xnis1s

s-1
Soit I'équation P(r) = r®- Zakrk =0 (appelée équation caractéristique de (xy)).
k=0

L'ensemble (S) est un espace vectoriel de dimension s. S le polyndme P est scindé et si 4y, ..., Aq sont lesracines de P
de multiplicités respectives ¢, ... , aq une base de (S) est (nk/li" )Eifé‘a‘ .

Etant donné (o, ... , Ys1) € KP il existe un unique élément de (S) tel que Xo = Yo, ... , Xs1 = Ys1.

(Réf. : Ramistome 1, p 415 a417).

3°/ Autre application : conver gence de A

Soit A une matrice (n, n) a coefficients complexes. On pose p(A) = I\E/IS%|/1| (appelé rayon spectral de A). Montrer que

: (A"convergevers0 ssi p(A) < 1).

L e paragraphe suivant donne un autre exemple d’ application du théoréme précédent.


https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex9.pdf

