1.5 Décomposition u =d + 6d’un endomorphisme

Théoréme : Soit u un endomorphisme de E espace vectoriel tel que son polyndme caractéristique soit scindé (c’'est le
cassi le corps K algébriquement clos, par exemple C).

Alorsu s écrit de fagon unique u = d + ¢ ou d est un endomorphisme diagonalisable de E et 6 un endomorphisme
nilpotent de E tels que dé = 4d.

Deplusd et ¢ sont des polynémes en u a coefficients dans K.
Démonstration : admettons provisoirement |e lemme suivant :
lemme:

(i) Soient f et g deux endomorphismes diagonalisablestels que fg = gf. Alorsf et g se diagonalisent dans une méme
base.

(ii) Soient f et g deux endomorphismes nilpotents qui commutent. Alors leur somme est nilpotente.

Existence de la décomposition : reprenons les notations du théoreme du 1.4. Si u, et v, sont les restrictions de u et de
u- AddaNgonau= A4ld + (u- A4dd) = 4dd + v, Ald est diagonalisable et v est nilpotent dans N et ces deux
endomorphismes commutent. Les endomorphisme d et ¢ de E définis par d/N, = Al d et 6/Ni = vi répondent ala

p
question. Remarquons que d = Zﬂkﬂk ou 7 sont les projecteurs sur Ny parallélement a @k N;.
k=1 1=

Montrons d’ abord que d et 6 définis précédemment sont des polyndmes en u.
PosonsP, = —4——=T](X-4)" (L<j<p).
(X —/Ij) ke

Les polyndme P; sont premiers entre eux dans leur ensemble; d’ apres le theoreme de Bezout il existe des polynémes
Qu ..., Qytelsque P,Q; + ... + PyQ, = 1. Onadonc :

P1(u)Qu(u) + ... + Pp(u) Qp(u) = Ide.

p
Posons 7, = P(U)o Q«(u) pour 1 < k < p. Pour tout X de E onadonc x = Zﬂk (x).
k=1

Mais 7(X) € Ny (car (X =4, )™ PiQx = xQcdonc (u— A, 1d)* z(X) = Qu)7(u)(X) = 0, car x(u) = 0) donc la somme
précedente est la décomposition de x dans lasomme directe E=N; @ ... ® N,. On en déduit que

1(X) est le projeté de x sur Ny parallélement a €r)k E, ; 7 = Py(u) Qqu) est donc la projection sur N parallélement &

_@k E, et c’est un polyndme en u.

Avec les notation précédenteson ad = Zp:ﬂkzrk et ¢ =u-d qui sont bien des polyndmes en u puisgue ' est |e cas de 7.
k=1

Unicité de la décomposition : soient D et N deux endomorphismestels que u =D + N et vérifiant les conditions de

I”énoncé. Comme D et N commutent ils commutent avec u d'apres |'égalité précédente donc ils commutent avec d et 6

puisque ce sont des polyndmesen u. Onécrith=D -d=¢- N. D’apreslelemme (i) h= D - d est diagonalisable (car

d et D commutent donc sont diagonalisables dans la méme base d'aprésle (i) du lemme); de plush = ¢ - N est nilpotent

(lemme (ii)). On en déduit aisement que h = 0 soit D = d puisque N = ¢.

Démonstration du lemme :

(i) Raisonnons par récurrence sur n =dim E. Si n =1 ¢'est évident. Supposons le résultat acquis pour tout espace
vectoriel de dimension < n. Soit E dimension n et soient A4, ... , 4, lesvaleur propre def. Si f est une homothétie le
résultat est vrai (toute base qui diagonalise g diagonalisef). Si f n'est pas une homothétie E est somme directe des sous-
espaces propres E, def. Commef et g commutent il est clair queles E, sont stables par g. I suffit alors d’ appliquer

I hypothese de récurrence a chacun des sous-espace vectoriel E, qui sont de dimension < n (car f n’est pas une
homothétie).



(ii) Soient p et g lesindices def et g. Comme f et g commutent on peut appliquer laformule du binbme de Newton :

(f+g)"¥= > C..f'g’ quiestnullecar danschagueterme delasommeonai > pouj > gdoncf'=0oug’ =0
|+] p+q

ce qui achéve ladémonstration du lemme.

On alatraduction matricielle évidente : toute matrice A de M,(K) se décompose de fagon uniqueen A= D + Nou D
est une matrice diagonalisable sur C, N une matrice nilpotente telles que DN = ND.

Corallaire:
(i) Dans les conditions du théoreme précédent on a: u est diagonalisable ssi 6 = 0;

(i) Tout matrice A de M (IR) se décompose de facon uniqueen A= D + N avec D et N dans M,(IR), D diagonalisable
sur € et N une matrice nilpotente telles que DN = ND.

Démonstration :
(i) sl u est diagonalisable on écrit u = u + 0 et |’ unicité de la décomposition donne 6 = 0. La réciprogue est évidente;

(i) s M € M,(C) désignons par M lamatrice dont les coefficients sont les conjugués de ceux de M. Pour A € M,(IR)
il existeD € M(C) diagonalisable dans C et N € M, (C) nilpotente tellesque A= D +N et DN = ND. A étant réelle

onaA=D+N. D estdiagonalisabledans C, N est nilpotenteet D.N=N.D . Par unicité de |a décomposition on
endéduit D =D et N =Ndonc D et N sont des matrices a coefficients réels.

Exemple : ladémonstration du théoréme donne un procédé effectif de calcul de D et N. Soit par exemple

7 3 -4
A=|-6 -2 5 |.Sonpolyndme caractéristique est (X - 1)%(X - 2). On ala décomposition en ééments simples
4 2 -1
1 1 1 , _ 2 . , o
> =— 5= + qui donne 1 = (X - 1)° - X(X - 2). Ladémonstration du théoreme indique
(X-1)°(X-2) (x-17 X-1 X-2
31 -1 4 2 -3
queD=2(A-15)°-AA-2l5)= |2 2 -1|eeN=A-D=|-8 -4 6 | (onvérifiequeN?=0).
4 2 -1 0O 0 O

Exercice 10 : exponentielle d’ une matrice

k +o0 Ak
Soit A € My(C). Onposeexp(A) =1 + A+ i+ +i+ i
2! K! o k!

1°/ Montrer que cette série est convergente (Mq(C) est par exemple muni delanorme: [M| = Sup||MX | ot
IX[=1

désigne lanorme euclidienne de C").
2°/ Soit P € GL(n, C). Montrer que exp(P'AP) = P exp(A)P.
3°/ Expliquer comment on peut calculer exp(A) si A est nilpotente, si A est diagonalisable puis dans e cas général.

5 —
Exemple: Calculer exp(A) avec A= [4 J.

p
Remarque : avec les notations de la démonstration, si d = Zﬂkﬂk ou 7 sont les projecteurs sur Ny parallélement a
k=1

p k p
® N;, ona, pour tout entier naturel g, d= Y Az (car mo =05 i=j), donc exp(d) = Z%zz&ﬂk . Sion
I= k=1 ko K &

reprend |'exemple précédent on adonc : exp(D) = €X(A - 13)% - A(A - 213). Comme exp(N) = | + N, on en déduit le calcul
de exp(A) (= (%(A - 13)* - A(A- 213)).(1+ N)).


https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex10.pdf

