
1.5 Décomposition u = d + δ d’un endomorphisme

Théorème : Soit u un endomorphisme de E espace vectoriel tel que son polynôme caractéristique soit scindé (c’est le
cas si le corps K algébriquement clos, par exemple c).

Alors u s’écrit de façon unique u = d + δ où d est un endomorphisme diagonalisable de E et δ un endomorphisme
nilpotent de E tels que dδ = δd.

De plus d et δ sont des polynômes en u à coefficients dans K.

Démonstration : admettons provisoirement le lemme suivant :

lemme :

(i) Soient f et g deux endomorphismes diagonalisables tels que fg = gf. Alors f et g se diagonalisent dans une même
base.

(ii) Soient f et g deux endomorphismes nilpotents qui commutent. Alors leur somme est nilpotente.

Existence de la décomposition : reprenons les notations du théorème du 1.4. Si uk et vk sont les restrictions de u et de
u - λkId à Nk on a uk = λkId + (u - λkId) = λkId + vk; λkId est diagonalisable et vk est nilpotent dans Nk et ces deux
endomorphismes commutent. Les endomorphisme d et δ de E définis par d/Nk = λkId et δ/Nk = vk répondent à la
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Montrons d’abord que d et δ définis précédemment sont des polynômes en u.
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Les polynôme Pj sont premiers entre eux dans leur ensemble; d’après le théorème de Bezout il existe des polynômes
Q1, ... , Qp tels que P1Q1 + ... + PpQp = 1. On a donc :

P1(u)Q1(u) + ... + Pp(u) Qp(u) = IdE.

Posons πk = Pk(u)o Qk(u) pour 1 ≤ k ≤ p. Pour tout x de E on a donc x = ∑
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Mais πk(x) ∈ Nk (car ( ) k

kX αλ− PkQk = χQk donc ( ) k

ku αλ Id− πk(x) = Qk(u)χ(u)(x) = 0, car χ(u) = 0) donc la somme
précédente est la décomposition de x dans la somme directe E = N1 ⊕ ... ⊕ Np. On en déduit que

πk(x) est le projeté de x sur Nk parallèlement à i
ki
E

≠
⊕ ; πk =  Pk(u) Qk(u) est donc la projection sur Nk parallèlement à
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Avec les notation précédentes on a d = ∑
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πλ et δ = u - d qui sont bien des polynômes en u puisque c’est le cas de πk.

Unicité de la décomposition : soient D et N deux endomorphismes tels que u = D + N et vérifiant les conditions de
l’énoncé. Comme D et N commutent ils commutent avec u d'après l'égalité précédente donc ils commutent avec d et δ
puisque ce sont des polynômes en u. On écrit h = D - d = δ - N. D’après le lemme (i)  h = D - d est diagonalisable (car
d et D commutent donc sont diagonalisables dans la même base d'après le (i) du lemme); de plus h = δ - N est nilpotent
(lemme (ii)). On en déduit aisément que h = 0 soit D = d puis que N = δ.

Démonstration du lemme :

(i) Raisonnons par récurrence sur n = dim E. Si n = 1 c’est évident. Supposons le résultat acquis pour tout espace
vectoriel de dimension  < n. Soit E dimension n et soient λ1, ... , λp les valeur propre de f. Si f est une homothétie le
résultat est vrai (toute base qui diagonalise g diagonalise f). Si f n'est pas une homothétie E est somme directe des sous-
espaces propres 

k
Eλ de f. Comme f et g commutent il est clair que les 

k
Eλ sont stables  par g. Il suffit alors d’appliquer

l’hypothèse de récurrence à chacun des sous-espace vectoriel 
k

Eλ qui sont de dimension < n (car f n’est pas une

homothétie).



(ii) Soient p et q les indices de f et g. Comme f et g commutent on peut appliquer la formule du binôme de Newton :

(f + g)p+q = ∑
+=+

+
qpji

jii
qp gfC  qui est nulle car dans chaque terme de la somme on a i ≥  p ou j ≥  q donc f i = 0 ou g j  = 0

ce qui achève la démonstration du lemme.

On a la traduction matricielle évidente : toute matrice A de Mn(K) se décompose de façon unique en A = D + N où D
est une matrice diagonalisable sur c, N une matrice nilpotente telles que DN = ND.

Corollaire :

(i) Dans les conditions du théorème précédent on a : u est diagonalisable ssi δ = 0;

(ii) Tout matrice A de Mn(r) se décompose de façon unique en A = D + N avec D et N dans Mn(r), D diagonalisable
sur c et N une matrice nilpotente telles que DN = ND.

Démonstration :

(i) si u est diagonalisable on écrit u = u + 0 et l’unicité de la décomposition donne δ = 0. La réciproque est évidente;

(ii) si M ∈ Mn(c) désignons par M  la matrice dont les coefficients sont les conjugués de ceux de M. Pour A ∈ Mn(r)
il existe D ∈ Mn(c) diagonalisable dans c et N ∈ Mn(c) nilpotente telles que A = D +N et DN = ND. A étant réelle
on a A = ND + . D  est diagonalisable dans c  N  est nilpotente et DNND .. = . Par unicité de la décomposition on

en déduit D  = D et N  = N donc D et N sont des matrices à coefficients réels.

Exemple : la démonstration du théorème donne un procédé effectif de calcul de D et N. Soit par exemple

A = 

7 3 4

6 2 5

4 2 1
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. Son polynôme caractéristique est (X - 1)2(X - 2). On a la décomposition en éléments simples

( ) ( ) ( )2 2

1 1 1 1

1 21 2 1 X XX X X
= − − +

− −− − −
 qui donne 1 = (X - 1)2 - X(X - 2). La démonstration du théorème indique

que D = 2(A - I3)
2 - A(A - 2I3) =  
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 et N = A - D = 

4 2 3
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 (on vérifie que N 2 = 0).

Exercice 10 : exponentielle d’une matrice

Soit A ∈ Mn(c). On pose exp(A) = I + A + 
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1°/ Montrer que cette série est convergente (Mn(c) est par exemple muni  de la norme : 
1

Sup
X

M MX
=

=  où X

désigne la norme euclidienne de cn ).

2°/ Soit P ∈ GL(n, c). Montrer que exp(P-1AP) = P-1exp(A)P.

3°/ Expliquer comment on peut calculer exp(A) si A est nilpotente, si A est diagonalisable puis dans le cas général.

Exemple : Calculer exp(A) avec A = 
5 1

4 1
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⎠
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Remarque : avec les notations de la démonstration, si d = ∑
=

p

k
kk

1

πλ où πk sont les projecteurs sur Nk parallèlement à
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1

p
q
k k

k

λ π
=
∑  (car πi o πj = 0 si i ≠ j), donc exp(d) = 

0 !

k

k

d

k≥
∑ =

1

k

p

k
k

eλ π
=
∑ . Si on

reprend l'exemple précédent on a donc : exp(D) = e2(A - I3)
2 - A(A - 2I3). Comme exp(N) = I + N, on en déduit le calcul

de exp(A) (= (e2(A - I3)
2 - A(A - 2I3)). ( )I N+ ).

https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex10.pdf

