
1.6 Sous-espaces cycliques

1.6.1 Sous-espaces cycliques d’un endomorphisme

Soit u ∈ L(E) fixé. On peut munir E d’une structure de K[X]-module (mêmes définitions qu’un espace vectoriel mais
le corps est remplacé par un anneau commutatif quelconque, ici K[X]) en prenant pour loi externe :

∀  P ∈ K[X],  ∀  y ∈ E  :  P.y  =  P(u)(y).

On note Eu ce K[X]-module. Si F est un sous-module de Eu alors c’est aussi un sous-espace vectoriel de E et pour tout
y de F on a X.y ∈ F i.e u(y) ∈ F donc F est un sous-espace vectoriel de E stable par u; la réciproque est évidente donc
les sous-modules de Eu sont les sous-espaces vectoriels de E stables par u.

Si x est un élément de E on note Ex le sous-module engendré par x (i.e le plus petit sous-module de Eu contenant x). On
voit immédiatement que c’est l’ensemble {P.x = P(u)(x) / P ∈ K[X]}qui est aussi le plus petit sous-espace vectoriel de
E stable par u. On l’appelle sous-espace cyclique engendré par x.

On dit que E est cyclique ssi il existe x ∈ E tel que E = Ex.

L'exercice suivant donne quelques précisions sur Ex.

Exercice 11

1°/ Montrer que Ex = Vect(ui(x) / i ∈ n) (sous-espace vectoriel engendré par les ui(x)).

2°/ Si x est non nul soit p = Max{i ∈ n / le système (x, u(x), ... , ui-1(x) est libre}. Montrer que dim Ex = p.

Soit up(x) = a0x + a1u(x) + ... + ap-1u
p-1(x) (ak ∈ K). Montrer que le polynôme P = Xp - ap-1X

p-1 - ... - a0 est le polynôme
minimal et le polynôme caractéristique de la restriction u/Ex de u à Ex.

Quelle est la matrice de u/Ex dans la base (x, u(x), ... , up-1(x)) ? 

 Exercice 12 : théorème de Cayley-Hamilton

1°/ Soit u ∈ L(E) et F un sous-espace vectoriel de E stable par u. Montrer que le polynôme caractéristique de u/F
divise celui de u.

2°/ Démontrer le théorème de Cayley-Hamilton : χ(u) = 0.

(Soit x ∈ E - {0} et Π le polynôme minimal et caractéristique (d'après Ex. 11, 2/) de la restriction de u à Ex; donc
Π(u)(x) = 0; de plus Π divise χ d’après 1°/ donc χ(u)(x) = (Q×Π)(u)(x) = Q(u)oΠ(u)(x) = 0).

Exercice 13

Soient Px et Py les polynômes minimaux de u/Ex et u/Ey pour x et y appartenant à E.

1°/ Montrer que si les polynômes Px et Py sont premiers entre eux on a : Ex ∩ Ey = {0}. Prouver que Px.Py = Pz où
z = x + y.

2°/ Montrer qu’il existe un élément x de E tel que µu = Px.

3°/ Montrer que si E est réunion d'un nombre fini de sous-espaces vectoriels Fi alors E est égal à l'un des Fi. Retrouver
le résultat de la question précédente.

4°/ Déduire du 2°/ que Eu est cyclique ssi χu = µu.

1.6.2 Théorème de Jordan

Une matrice Jq = 
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 (d’ordre q) est appelée matrice nipotente de Jordan. La matrice Jq(λ) = λIq + Jq est

appelée matrice de Jordan d’ordre q.

Lemme 1 : soit u un endomorphisme nilpotent d’indice ν de E. Il existe deux sous-espaces vectoriels F et G stables
par u tels que E = F ⊕ G et dim F = ν.
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Lemme 2 (Structure  des endomorphismes nilpotents) : soit u un endomorphisme nilpotent d’ordre ν de E. Il existe
des sous-espaces vectoriels E1, E2, ... ,Er stables par u et des bases B1, B2, ... ,Br de E1, E2, ... ,Er tels que
E = E1 ⊕ E2 ⊕ ... ⊕ Er  et, dans la base Bi, la matrice de u/Ei est une matrice de Jordan nilpotente 

ipJ avec pi = dim Ei

(1 ≤ i ≤ r).

Démonstration du lemme 1 : soit tu la transposée de u : c’est un endomorphisme de E* (dual de E) définie par
<tu(f *); x> = <f *; u(x)> pour toute forme linéaire f * et tout x de E. Comme on a (tu)p = t(up) pour tout entier naturel p
ainsi que u ≠ 0 ssi  tu ≠ 0, tu est nilpotente d’indice ν. On a donc tuν-1 ≠ 0 et par suite il existe x ∈ E et f * ∈ E* tels que
<tuν-1(f *); x> ≠ 0 soit  <f *; uν-1(x)> ≠ 0.

On a donc uν-1(x) ≠ 0 et par conséquent le système (x, u(x), ... , uν-1(x)) est libre (exercice 6). De même le système
(f *, tu(f *), ... , tuν-1(f *)) est libre. Posons F = <x, u(x), ... , uν-1(x)> et G = < f *, tu(f *), ... , tuν-1(f *) >⊥ .

F est un sous-espace vectoriel de E de dimension ν stable par u. De même <f *, tu(f *), ... , tuν-1(f *)> est un sous-
espace vectoriel de E* stable par tu de dimension ν donc son orthogonal G est stable par u et de dimension n - ν (en
effet on voit facilement qu’un sous-espace vectoriel est stable par u ssi son orthogonal est stable par tu).

Montrons que F ∩ G = {0} ce qui prouvera que E = F ⊕ G et achèvera la démonstration de lemme 1.

Soit donc y ∈ F ∩ G. Il existe des scalaires a0, a1 , ... , aν-1 tels que y = ∑
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<f *; uj(y)> = 0 pour tout entier j de {0, ... , ν - 1}. Pour j = ν-1 il vient  :    <f *, a0u
ν-1(x)> = 0 (car up = 0 pour p ≥ ν)

soit a0<f *; uν-1(x)> = 0 donc a0 = 0  (<f *; uν-1(x)> étant non nul). En prenant ensuite j = ν-2 on montre de même que
a1 = 0 et de proche en proche tous les aj sont nuls, donc y = 0.

Démonstration du lemme 2 : avec les notations du lemme 1, la matrice de u dans le base B1 = (x, u(x), ... , uν-1(x)) de F
est la matrice de Jordan nilpotente d’ordre ν et la restriction de u au sous-espace vectoriel G est nilpotente : on termine
alors facilement par récurrence sur la dimension n de E.

On déduit de ces deux lemmes le

Théorème (décomposition de Jordan d’un endomorphisme) : avec les hypothèses du théorème 1.4, il existe une base
de E où la matrice de u est une matrice diagonale de matrices Jh(λk) (1 ≤ k ≤ p).  

Fin de la Démonstration du théorème : reprenons les notations du théorème de 1.4 et soit E = N1 ⊕ ... ⊕ Np la
décomposition de E en sous-espaces spectraux. Raisonnons dans Nk : on applique le lemme 2 à la restriction vk de u -
 λkId à Nk qui est nilpotent et on obtient une base de Nk dans laquelle la matrice de vk est une matrice diagonale de
matrices nilpotentes de Jordan. Dans cette base la matrice de u/Nk est une matrice diagonale de matrices de Jordan
Jh(λk). En « recollant » ces bases de Nk on obtient une base de E qui a la propriété voulue.

Les deux exercices suivants donnent des applications de ce théorème :

Exercice 14

Montrer qu’une matrice réelle M est semblable à sa transposée (raisonner d’abord dans Mn(c)).

Exercice 15

Soit A ∈ GLn(c); montrer qu’il existe B ∈ Mn(c) telle que A = exp(B).

1.6.3 Décomposition de E somme directe de sous-espaces cycliques

Théorème : Soit u ∈ L(E).

(i) Il existe une suite F1, ... , Fr de sous-espaces cycliques (donc stables par u) tels que E = F1⊕ ... ⊕Fr ; si Pi est le
polynôme minimal de la restriction de u à Fi alors Pi  est multiple de Pi+1 (1 ≤ i ≤ r-1); le polynôme minimal de u est

P1 et son polynôme caractéristique P1× ×Pr.

(ii) La suite de polynômes précédente est entièrement déterminée par u; deux endomorphismes sont semblables ssi la
suite de polynômes associés sont égales.

La suite (P1, ... , Pr) uniquement déterminée par u s’appelle invariants de similitude de u (ou facteurs invariants de u).

Démonstration du théorème :
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Existence d’une décomposition : d’après l’exercice 12 il existe x ∈ E tel que µ = Px. Soit Ex le sous-espace cyclique
engendré par x. Supposons qu’on ait montré que Ex a un supplémentaire F stable par u : E = Ex ⊕ F. Le polynôme µ
annule la restriction u/F de u à F donc le polynôme minimal de u/F divise µ. On pose µ = P1 et on termine facilement
par récurrence sur n.

Tout revient donc à montrer que Ex possède un supplémentaire stable par u.

Posons µ = q
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Lemme 1 : il existe (x, f *) ∈ E×E* tel que Px = µ = *fP  et pour tout j de {1, ... , q} : <f *; pj.x> ≠ 0.

Démonstration du lemme 1 : montrons que le système (p1.x, ... , pq.x) est libre (on rappelle que si P ∈ Erreur! Signet

non défini.[X], P.x = P(u)(x)). Supposons que ∑
=
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 = 0. Pour 1 ≤ j ≤ q, si on multiplie les deux membres par le

polynôme qj = 
j

q

P

P...P1  il vient akqjpj.x = 0 (car si k ≠ j le polynôme qjpk est un multiple de µ). Comme qjpj n’est pas un

multiple de µ (car le facteur Pj est la puissance αj - 1) on a qjpj.x ≠ 0 soit aj = 0 et le système (p1.x, ... , pq.x) est libre.

Il existe donc f * ∈ E* telle que <f*; pj.x> = 1 pour 1 ≤ j ≤ q. Montrons que *fP  = µ.

On munit E* de sa structure de K[X]-module grâce à tu (donc pour tout P ∈ K[X] et tout f * de E* : P.f * = P(tu)(f *)).
Comme pour tout z de E  <µ.f *; z> = <f *; µ.z> = 0, on a µ.f * = 0 donc *fP  divise µ. Mais <pj.f *; x> = <f *; pj.x> ≠

 0 donc on a  *fP  = µ d’où le lemme 1.

Posons F = <tuk(f *) / k ∈ n>⊥  et montrons que E = Ex ⊕ F.

On a dim Ex = d°µ = q et de même la dimension de  <tuk(f *) / k ∈ n> est égale au degré de *fP  qui est aussi q d’après

le lemme précédent donc dim F = n - q.

D’autre part <tuk(f *) / k ∈ n> est stable par tu donc F est stable par u. Pour avoir E = Ex ⊕ F il reste donc à montrer
que Ex ∩ F = {0}.

Soit donc y ∈ Ex ∩ F. Il existe Q ∈ K[X] tel que y = Q.x et pour tout R de K[X] on a   <R.f *; y> = 0 soit
<R.f *; Q.x> = 0 ou <f *; RQ.x> = 0.

Lemme 2 : x et f * étant choisis comme dans le lemme 1, supposons que pour tout R ∈ K[X] on ait <f *; RQ.x> = 0.
Alors µ divise Q.

 Admettons provisoirement le lemme. On a donc µ divise Q donc Q(x) = 0 soit y = 0 ce qui achève la démonstration de
l’existence de la décomposition.

D’après l’exercice 4 le polynôme caractéristique de u est P1× ×Pr.

Démonstration du lemme 2 :

Soit D le pgcd de Q et de µ. K[X] étant principal il existe U et V dans K[X] tels que D= UQ + Vµ. Supposons que

d°D < d°µ. D s’écrit q
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21  avec βk ≤ αk pour 1 ≤ k ≤ q et il existe j ∈ {1, ... , q} tel que βj < αj. Donc D divise

pj (on rappelle que pj = 
jP

µ
) i.e pj appartient à l’idéal (D) = (Q) + (µ) et il existe U’ et V’ dans K[X] tels que

pj = U’Q + V’µ .

On écrit : <f *; pj.x> = <f *; U’Q.x> + <f *; V’µ.x> = 0 puisque <f *; U’Q.x> = 0 par hypothèse et <f *; V’µ.x> = 0
(µ.x = 0) ce qui est absurde car <f *; pj.x> ≠ 0.

Unicité de la décomposition  : supposons que l’on ait une autre décomposition avec les conditions de l’énoncé :
E = G1 ⊕ ... ⊕ Gp = F1 ⊕ ... ⊕ Fr et soit Qi le polynôme minimal de u/Gi.

Comme F1 et G1 sont cycliques leur dimension est égale au degré de leur polynôme minimal (exercice 10, 2°/). Mais
µ = ppmc(Pi) = P1 = ppmc(Qi) = Q1 (exercice 4, 1°/) donc dim G1 = dim F1. Si p = 1 alors r = 1. Si p et r sont > 1, le



polynôme minimal des restrictions de u à G2 ⊕ ... ⊕ Gp et F2 ⊕ ... ⊕ Fr sont respectivement Q2 et P2 donc on a de
même dim G2 = dim F2. On voit par récurrence que dim Gk = dim Fk pour k ≤ Min(p, r) et par conséquent p = r. Si
p = r = 1 on a F1 = G1 = E et l’unicité est démontrée. Soit donc p = r ≥  2.

Supposons que (P1, ... , Pr) ≠ (Q1, ... , Qr) et soit j le plus petit entier k tels que Pk ≠ Qk. On a donc j ≥  2.

Pj étant un multiple de Pk pour k ≥ j on a :

Pj(u)E = Pj(u)F1 ⊕ ... ⊕ Pj(u)Fj-1 = Pj(u)G1 ⊕ ... ⊕ Pj(u)Gj-1 ⊕ Pj(u)Gj ⊕ ... ⊕ Pj(u)Gr  (*).

Comme Pi = Qi pour 1 ≤ i ≤ j-1 on a dim Fi = dim Gi (Fi et Gi étant deux espaces cycliques ayant même polynôme
minimal). L’égalité (*) donne alors Pj(u)Gj = ... = Pj(u)Gr = {0} et par conséquent Pj est un multiples de Qj.   

On montrerait de même que Qj est un multiple de Pj par conséquent Qj = Pj ce qui contredit la définition de j.

Cela démontre entièrement le (i).

(ii) u étant donné les sous-espaces vectoriels Fk sont déterminés de façon unique et Pk est le polynôme minimal de u/Fk

qui sont donc déterminés de façon unique.

Si P = a0 + a1X + ... + apX
p ∈ K[X]  notons M(P) la matrice 
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. D’après l’exercice 10 il existe une base

de E dans laquelle la matrice de u est 
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 d’où il résulte que deux endomorphismes sont semblables

ssi ils ont même invariants de similitudes.


