1.6 Sous-espaces cycliques
1.6.1 Sous-espaces cycliques d’un endomor phisme

Soit u € L(E) fixé. On peut munir E d’ une structure de K [X]-module (mémes définitions qu’ un espace vectoriel mais
le corps est remplacé par un anneau commutatif quelconque, ici K[X]) en prenant pour loi externe :
vV PeK[X], VyeE : Py = PUu)y).

On note E, ce K[ X]-module. Si F est un sous-module de E, alors ¢’ est aussi un sous-espace vectoriel de E et pour tout
ydeFonaXy € Fi.eu(y) € Fdonc F est un sous-espace vectoriel de E stable par u; laréciprogue est évidente donc
les sous-modules de E,, sont les sous-espaces vectoriels de E stables par u.

Si x est un éément de E on note E, |e sous-module engendré par x (i.e le plus petit sous-modul e de E, contenant x). On
voit immédiatement que c'est I'ensemble { P.x = P(u)(X) / P € K[X]}qui est aussi le plus petit sous-espace vectoriel de
E stable par u. On | appelle sous-espace cyclique engendré par x.

On dit que E est cycligue ssi il existex € E tel que E = E,.

L 'exercice suivant donne quelques précisions sur E,.

1°/ Montrer que E, = Vect(u'(X) / i € IN) (sous-espace vectoriel engendré par les u'(x)).
2°/ Si x est non nul soit p=Max{i € IN / le systéme (X, u(x), ... , U™ (x) est libre} . Montrer que dim E, = p.

Soit UP(X) = agX + aqU(X) + ... + a,1UP(X) (& € K). Montrer que le polyndme P = X° - a,,XP™* - ... - a; est le polynéme
minimal et le polyndme caractéristique de larestriction u/E, de u & E,.

Quelle est lamatrice de u/E, dans labase (x, u(X), ... , U"*(x)) ?

| Exercice 12 : théoréme de Cayley-Hamilton |

1°/ Soit u € L(E) et F un sous-espace vectoriel de E stable par u. Montrer que le polynéme caractéristique de u/F
divise celui de u.

2°/ Démontrer le théoréme de Cayley-Hamilton : »(u) = 0.

(Soitx € E- {0} et /71e polyndme minimal et caractéristique (d'aprés Ex. 11, 2/) de larestriction de u a E,; donc
TIu)(X) = 0; de plus 77divise y d apres 1°/ donc y(u)(x) = (Qx72)(u)(X) = Q(u)o/A(u)(X) = 0).

Soient Py et Py les polyndmes minimaux de u/E, et u/E, pour X et y appartenant a E.

1°/ Montrer que si les polynémes Py et P, sont premiers entre eux on a: E, n E, = {0}. Prouver que P,.P, = P, ou
Z=X+Y.
2°/ Montrer qu'il existe un éément x de E tel que 14, = Py.

3°/ Montrer que si E est réunion d'un nombre fini de sous-espaces vectoriels F; alors E est égal al'un des F;. Retrouver
le résultat de la question précédente.

4°/ Déduire du 2°/ que E, est cyclique ssi y, = .
1.6.2 Théoréme de Jordan
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Une matrice J, = i - | (d’ordre q) est appelée matrice nipotente de Jordan. Lamatrice Jo(4) = Alq + Jq est
L 10

appel ée matrice de Jordan d' ordre g.

Lemme 1 : soit u un endomorphisme nilpotent d’'indice v de E. Il existe deux sous-espaces vectoriels F et G stables
parutedsqueE=F @ GetdimF = v.
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Lemme 2 (Structure des endomor phismes nilpotents) : soit u un endomorphisme nilpotent d’ ordre vde E. Il existe
des sous-espaces vectoriels Ey, B, ... ,E; stables par u et des bases By, By, ... ,B;de Ey, E,, ... ,E; telsque
E=E ® E; @ .. @ E €, danslabase B;, |lamatrice de u/E; est une matrice de Jordan nilpotente J , VEC ;= dmE

@<i<n).

Démonstration du lemme 1 : soit 'u latransposée de u : ¢ est un endomorphisme de E* (dua de E) définie par

<'u(f *); x> = <f *; u(x)> pour toute forme linéaire f * et tout x de E. Comme on a (‘u)’ = '(u°) pour tout entier naturel p
ainsi queu=0ss 'u=0,'uest nilpotente d’indice v. On adonc 'u**! = 0 et par suiteil existex € Eetf* € E* telsque
<ui(f*); x> = 0 soit <f*; U (x)>=0.

On adonc u"*(x) = 0 et par conséquent le systéme (x, u(x), ... , u"*(x)) est libre (exercice 6). De méme le systéme
(F*,'u(f*), ..., 'u"™(f*)) est libre. Posons F = <x, u(X), ..., U (X)> et G = < f* 'u(f *), ..., 'u(f*) >* .

F est un sous-espace vectoriel de E de dimension v stable par u. De méme <f *, 'u(f *), ... , 'u**(f *)> est un sous-
espace vectoriel de E* stable par 'u de dimension v donc son orthogonal G est stable par u et de dimensionn - v (en
effet on voit facilement qu’ un sous-espace vectoriel est stable par u ssi son orthogonal est stable par 'u).

Montrons que F N G = {0} ce qui prouveraque E = F & G et achéveraladémonstration de lemme 1.

v-1 .
Soitdoncy € F N G. Il existedes scalaires ao, @, ... , a1 telsquey = > au“(x) et d autre part <u(f*); y>= Oou
k=0

<f*; U(y)> = 0 pour tout entier j de{0, ..., v- 1}. Pourj = w-1il vient : <f* au"*(x)>=0 (car u"=0pourp > V)
soit ag<f *; u"*(x)>=0donc a; = 0 (<f*; u"*(x)> étant non nul). En prenant ensuite j = 12 on montre de méme que
a; = 0 et de proche en proche tous les g sont nuls, doncy = 0.

Démonstration du lemme 2 : avec les notations du lemme 1, lamatrice de u dans le base B, = (x, u(X), ... , u**(x)) de F
est lamatrice de Jordan nilpotente d’ ordre v et larestriction de u au sous-espace vectoriel G est nilpotente : on termine
alors facilement par récurrence sur ladimension n de E.

On déduit de ces deux lemmesle

Théor éme (décompoasition de Jordan d’' un endomorphisme) : avec les hypothéses du théoréme 1.4, il existe une base
de E ou lamatrice de u est une matrice diagonal e de matrices J,(4) (1 < k < p).

Fin de la Démonstration du théoréme : reprenons les notations du théoremede 1.4 et SOit E=N; @ ... ® N, la
décomposition de E en sous-espaces spectraux. Raisonnons dans N, : on applique lelemme 2 alarestriction v de u -
Mdd aNyg qui est nilpotent et on obtient une base de Ny dans laguelle la matrice de v est une matrice diagonale de
matrices nil potentes de Jordan. Dans cette base |a matrice de u/N est une matrice diagonal e de matrices de Jordan
Jn(A). En « recollant » ces bases de Ny on obtient une base de E qui ala propriété voulue.

Les deux exercices suivants donnent des applications de ce théoréeme :

Montrer qu’ une matrice réelle M est semblable & sa transposée (raisonner d’ abord dans M(C)).

Soit A € GL,(C); montrer qu'il existe B € M,(C) telle que A = exp(B).
1.6.3 Décomposition de E somme dir ecte de sous-espaces cycliques
Théoréme: Soitu € L(E).

(i) Il existe une suite F4, ... , F; de sous-espaces cycliques (donc stablespar u) telsqueE=F1® ... ®F, ; s P, est le
polynéme minimal de larestriction deu aF; alors P; est multiplede Pi.; (1 <i < r-1); le polyndme minimal de u est

P, et son polyndme caractéristique P;x ... xP;.

(i) Lasuite de polynémes précédente est entiérement déterminée par u; deux endomorphismes sont semblables ssi la
suite de polynémes associés sont égales.

Lasuite (P, ..., P;) uniquement déterminée par u s appelle invariants de similitude de u (ou facteurs invariants de u).

Démonstration du théoréme :
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Existence d’ une décomposition : d’ aprés |’ exercice 12 il existe x € E tel que n = Py. Soit E, |e sous-espace cyclique
engendré par x. Supposons qu’ on ait montré que E, a un supplémentaire F stable par u: E = E; ® F. Le polynéme
annule larestriction u/F de u a F donc le polynéme minimal de u/F divise x. On pose 1 = P; et on termine facilement
par récurrence sur n.

Tout revient donc a montrer que E, posséde un supplémentaire stable par u.

Posons u= P Py ...R* oules polyndmes Py sont irréductibles et £ P*..R P

R
H Lemmel: il existe (x, f*) € ExE* tel que Px=u= P,. etpourtoutjde{l,..,q} :<f*; p.x>=0.
Démonstration du lemme 1 : montrons que e systéme (py.X, ... , Pq-X) €st libre (on rappelle que si P € Erreur! Signet

q
non défini.[X], P.x = P(u)(x)). Supposons que > a,p, X = 0. Pour 1 < j < g, s on multiplie les deux membres par le

k=1

R P..P,
polyndme q; =

il vient a,qjp;.x = 0 (car si k = j le polyndme ¢jp est un multiple de ). Comme g;p; n’ est pas un
i

multiple de u (car le facteur P; est la puissance ¢; - 1) on aqjp;.x = 0 soit & = 0 et le systeme (p1.X, ... , Pg.X) €st libre.

Il existedonc f* € E* telle que <f*; p.x>=1pour 1 <j < g. Montronsque P,. = ..

On munit E* de sa structure de K [X]-module grace & 'u (donc pour tout P € K[X] et tout f * de E* : P.f* = P('u)(f *)).

Comme pour tout zde E <wp.f*; 2> =<f*; n.z>=0,onanf* =0donc P,. divise u. Mais<p.f*; x> =<f*; pp.x> =

Odoncona P,. =udoulelemmel.

Posons F = <'u(f*) / k € IN>" et montronsque E = E, @ F.
OnadimE, = d°x = g et de méme ladimension de <'u(f *) / k € IN> est égale au degré de P,. qui est aussi q d’aprés
le lemme précédent doncdimF =n - q.

D’ autre part <'u(f *) / k e IN> est stable par 'u donc F est stable par u. Pour avoir E = E, @ F il reste donc & montrer
que Exn F ={0}.

Soitdoncy € Exn F. Il existe Q € K[X] tel quey = Q.x et pour tout Rde K[X] ona <Rf*;y>=0 soit
<Rf*; Qx>=0o0u<f*;, RQx>=0.

Lemme 2: x et f* étant choisis comme dans |e lemme 1, supposons que pour tout R € K[X] on ait <f *; RQ.x> = 0.
Alors u divise Q.

Admettons provisoirement le lemme. On a donc x divise Q donc Q(x) = 0 soit y = 0 ce qui achéve la démonstration de
I’ existence de la décomposition.

D’ aprés |’ exercice 4 le polyndme caractéristique de u est Pyx ... xP;.
Démonstration du lemme 2 :

Soit D le pged de Q et de p. K[X] étant principal il existe U et V dans K[X] tels que D= UQ + V. Supposons que
d°D <d°u. D s écrit BA.P/*..P" avec fi < o pour 1 < k < qetil existej €{1, ..., o} tel que 4 < ¢;. Donc D divise

p; (on rappelle que p; = %) i.epj appartient al’idéal (D) = (Q) + (w) et il existe U’ et V' dansK[X] tels que
j
p=UQ+Vu.
On écrit: <f*; ppx>=<f*; U Qx> + <f *; V' u.x> = 0 puisque <f *; U’ Q.x> = 0 par hypothése et <f *; V' u.x>=0
(u.x=0) cequi est absurde car <f *; p;.x> = 0.

Unicité de la décomposition : supposons que |’ on ait une autre décomposition avec les conditions de I’ énonceé :
E=G1®..0G,=F, @ ... ® F, et soit Q le polynbme minimal de u/G;.

Comme F; et G; sont cycliques leur dimension est égale au degré de leur polyndme minimal (exercice 10, 2°/). Mais
4= ppmc(P;) = Py = ppmc(Q;) = Q1 (exercice 4, 1°/) doncdim G, =dimF,. Sip=1adorsr=1. Sipetrsont>1,le



polyndme minimal desrestrictionsdeua G, ® ... ® Gyet F, @ ... ® F, sont respectivement Q. et P, donc on ade
méme dim G, = dim F,. On voit par récurrence que dim G, = dim Fy pour k < Min(p, r) et par consequentp=r. Si
p=r=21onaF;=G; =Eet|'unicité est démontrée. Soitdoncp=r > 2.

Supposons que (Py, ..., P) # (Qq, ..., Q) €t soit | le plus petit entier k tels que Px = Qx. Onadoncj > 2.
P; étant un multiple de Pypour k >j on a:
Pj(U)E = Pj(U)F]_ @D .8 Pj(U)Fj_l = Pj(U)Gl ® .. Pj(U)Gj_l @ Pj(U)Gj ® .. Pj(U)Gr (*)

CommeP; = Q pour 1 <i<j-lonadimF; =dimG; (F; et G; éant deux espaces cycliques ayant méme polynéme
minimal). L’ égalité (*) donne alors P;j(u)G; = ... = P(u)G, = {0} et par conséguent P; est un multiples de Q;.

On montrerait de méme que Q; est un multiple de P; par conséquent Q; = P; ce qui contredit la définition dej.
Cela démontre entiérement le (i).

(ii) u étant donné les sous-espaces vectoriels Fy sont déterminés de fagon unique et Py est le polynéme minimal de u/Fy
qui sont donc déterminés de fagon unique.

0 3
. N a X . L
S P=ay+aX+..+aX" € K[X] notons M(P) lamatrice 0 . D’aprés|’exercice 10 il existe une base
1 a,
M(F)
de E dans laguelle la matrice de u est - d ou il résulte que deux endomorphismes sont semblables

M(R)
ssi ils ont méme invariants de similitudes.



