2.1 Définitions

Formesbilinéaires et bilinéaires symétriques : Une application ¢ de ExE dansK est bilinéaire ssi elle est linéaire
par rapport a chaque variable. Si de plus pour tout (x, y) € ExXE ona ¢(X, y) = ¢(y, X) on dit que ¢ est symétrique.

Formes sesquilinéaires et sesquilinéaire hermitiennes : Une application ¢ de ExE dans C est sesquilinéaire ssi elle
est linéaire par rapport ala premiére variable et semi-linéaire par rapport a la deuxiéme. Cela s exprime par les
identités :

(i) p(x+X,y) = px,y) + pX,y) et plax,y) = ap(X,y);
(i) o, y+yY) =X y) + ox. y') et ox, ay) = & pX, Y).
Si de plus pour tout (x, y) € ExE ona ¢(x, y) = ¢(y,X) on dit que ¢ est hermitienne.

formes quadratiques : Une application g de E dansK est une forme quadratique ssi il existe une forme bilinéaire ¢
telle que q(X) = ¢(X, X) pour tout x de E. On aaorslesidentités:

a(exX) = a’q(x);
a(x+y) = a(x) +ay) + o(x, y) + Ay, X);
aix+y) - qx-y) =2(e(x y) + ¢y, X)) (pour tous x et y de E et tout « de K).

II'y-aune seule forme bilinéaire symétrique ¢ telle que ¢(x, X) = q(x), définie par :
2¢(x,y) =a(x+y)-q(x) - aly) ou 4g(x,y) =q(x+y)-a(x-y).
¢ est appelée forme polaire de .

formes quadratiques hermitiennes : soit ¢ une forme sesquilinéaire et posons q(x) = ¢(x, X) pour tout x de E. On a
alorslesidentités:

q(eX) = lafa(x);

a(x+y) =a(¥) +ay) + ¢x, y) + ey, X);

gix+y)-q(x-y) +ig(x+iy) - iq(x - iy) = 4e(X, y) (pour tous x et y de E et tout « de K);

g étant donnée la forme sesquilinéaire ¢ telle que ¢(x, X) = q(x) est définie de fagon unique par :
4p(x,y) =a(x +y) - a(x-y) +ig(x +iy) - iq(x - iy).

On dit qu’ une application q de E dans C est une forme quadratique hermitienne ssi il existe une forme
sesquilinéaire hermitienne ¢ telle que, pour tout x de E, on ait : q(x) = ¢(x, X). Onaaors Vv x e E: q(x) € R.

@ est unique et est appel ée forme polaire de g.
matrice de ¢ : Soit ¢ une forme bilinéaire ou sesquilinéaireet si B=(g) (1 < i < n) est une base de E lamatrice
2= (p(&,g)); est appelée matrice de ¢ dans|a base B.
Si X et Y sont les coordonnées de x et y dans cette base on vérifie que :
o(x, y) = XQY s pesthilinéaire et p(x,y) ='XQY s ¢ est sesquilinéaire.

1°/ Soit q une forme quadratique. Dans une base de E si x € E a pour coordonnées (xg, ... , X,) montrer que
a0 = X a,x +2.3 %X .
k=1 i<j
Montrer que laforme polaire de g a pour matrice M = (¢;j) avec aij = & et aij = ¢ = &/2S i =].
2°/ Si g une forme quadratique hermitienne montrer que :
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a(x) = Z&,imz +.8 %X, avec ;J =a;.

i#]
Montrer que laforme polaire de g a pour matrice M = (a;;).

Changements de bases: si B’ = (f;) est une autre base et si P est la matrice de passage de B aB’ lamatrice 22’ de ¢
danslabase B’ est donnée par : (resp. |2’ ='P.Q.P|si ¢est sesquilinéaire).

(En effet dans e cas ou ¢ est sesquilinéaire et si X et Y sont les coordonnées de x et y danslabase B et X' et Y’ leurs
coordonnées danslabase B onaX =PX et Y=PY donc:

(%, y) = XQY ='{(PX)APY')=X(PRP) Y =X Y (ol estlamatricede ¢ danslabaseB').
L’ égalité étant valable pour tous X' et Y’ de K" on en déduit que lamatrice €2 de ¢ danslabase B’ est 'PP).

Orthogonalité : soit ¢ une forme bilinéaire symétrique ou sesquilinéaire hermitienne; on dit que x et y de E sont
orthogonaux par rapport a ¢ ssi ¢(x, y) = 0. Si A est une partie quelconque de E I’ orthogonal de A est la partie de E
notée A" et définiepar : A" ={x € E/ V y € A: ¢(x,y) = 0}. Noter que si A est non vide, A" est toujours un sous-
espace vectoriel de E mémesi A nel’ est pas.

Coneisotrope : avec les notations précédentes |e cone isotrope de ¢ est défini par :
C(p) ={x € E/ ¢(x, X) = 0} (c’est donc I'ensemble des x orthogonaux a eux méme).
Positivité : une forme bilinéaire symétrique ou sesquilinéaire hermitienne ¢ est positive ssi pour tout x de E on a
o(x, X) > 0.
Formes définies : une forme bilinéaire symétrique ou sesquilinéaire hermitienne ¢ est définiessi on a:
(X, X)=0 = x=0.
C'est équivalent a dire que son cone isotrope est réduit a{ 0} .
Propriété: soit ¢ une forme bilinéaire symétrique ou sesquilinéaire hermitienne positive.
(i) Si ¢ est positive dors, pour tout (x,y) € Eona:
lo(x, y)| < (a(X).q(y))¥? (inégalité de Cauchy-Schwarz). Il y aégalité si x et y sont colinéaires.

(ii) Si de plus ¢ est définie alors I’ application x — (¢(x, X))*? est une norme et il y a égalité dans |’ inégalité précédente
ssi x et y sont colinéaires.

Démonstration de la propriété :

(i) Soit ¢ une forme bilinéaire symétrique et (x, y) € ExE. Pour tout 4 € R ona g(Ax +y, Ax+y) > 0 soit
A7q(xX) + 229 (%, y) + q(y) =0. Si q(x) = 0onalg(x,y) +q(y) > 0 pour tout A de R donc on en déduit aisément que

o(x, y) =0et!'inégalité est vérifiée. Si q(x) = 0 on aun trindbme du second degré toujours > 0 donc son discriminant
réduit 5= (¢(x, y))? - q(y)q(x) est < 0 ce qui démontre |I’inégalité.

Soient x et y colinéaires. Si x ou y est nul I'inégalité précédente est une égalité. Sinon il existe A € K tel que Ax+y =0
et le trindme précédent a une solution donc & = 0 soit (%, )| = (9(X).q(y))Y2

S ¢ est une forme sesquilinéaire hermitienne. Ona @(Ax +y, Ax+y) > 0 pour tout A complexe soit
|Afa+ 2Re(Ab) + ¢ > 0 (*) enposant a=q(x) (€ R), b= p(x, y) et c = q(y).
Posons b = |b|.€’. En remplagant A4 par t €'? dans I'inégalité précédente on obtient pour tout t :
o(te'+y, te' +y) =t?a+2t|p|+c > 0.
Si a est hon nul on a un polyndme du second degré toujours positif ou nul et on en déduit comme précédemment
I'inégalité demandée.
Si x et y sont colinéaires non nulsil existe 1o € C tel que Aox + y = 0 soit o(tee' % + Y, toe +y) = 0 avecty = Ao €°.
Le discriminant du trindme t%a + 2t.Jo| + ¢ est nul, soit |b]* = ac et I’inégalité de Cauchy-Schwarz est une égalité.



(ii) Supposons ¢ sesquilinéaire hermitienne définie positive et posons N(x) = (q(x))"? pour tout de E. On a

N(X) =0 ssi x=0et N(1x) = |AN(X). Il reste dprouver I'inégalité triangulaire : N(x +y) < N(x) + N(y). Elle équivaut
aqx+y) <[(@C)"*+ay)"* soitaq(x) +q(y) + 2 Rep(x, y) < d(x) +q(y) + 2[a()a(y)]**ou encore a :

Rep(x, y) < [a(x)a(y)]"? et cette derniére inégalité résulte de I’ inégalité de Cauchy-Schwarz puisque :

Reg(x,y) < [o(x, y)I-
Avec les notations précédentes si I’inégalité de Cauchy-Schwarz est une égalité et si a = 0, (**) montre que

P(Ax+y, Ax+y)=0pour 1= —b/a soit Ax+y=0.Si c=0on obtient de méme unerelation x + 1y = O et si
a=c=0onax=y=0.Danstouslescasx ety sont liés.

Une forme bilinéaire symétrique 5ou sesquilinéaire hermitienne) définie positive s appelle un produit scalaire de E.

Un espace vectoriel réel E muni d’ une forme bilinéaire symétrique définie positive s appelle espace préhilbertien
réel ; un espace vectoriel complexe muni d’une forme sesquilinéaire hermitienne définie positive E s appelle espace
préhilbertien complexe. Si ces espaces sont de dimension finie on |es appelle respectivement espaces euclidien et
espaces hermitiens.

La norme associée (|[x|| = (¢(x, X))*? s appelle norme euclidienne dans le premier cas et norme hermitienne dans le
second.

Exemples: 1°/ Soit | unintervalle de IR non réduit aun point et @ une fonction continue et strictement positive sur

I"intérieur de | telle que, pour tout entier n, on ait <+4w.Alorse={f;1 — C continuesur |

[t eo(t)dt

/ H f (t)|2a)(t)dt < +o0} est un espace vectoriel et I’ application (f, g) — I f () g(t)w(t)dt est un produit scalaire dans E.
| |

Ainsi E muni de ce produit scalaire est un espace préhilbertien complexe.

(Lefait que E soit un espace vectoriel résulte de I’ inégalité [f + g* <2(Iff + [gl)).

2°/ Soit I%(IN) I’ ensembl e des suites (x,) complexes telles que Z|xn|2<+ o . C’est un espace vectoriel sur C et

n>0

I’ application ((xn), (Yn) — Z X, 7,, est un produit scalaire. 1?(IN) munit de ce produit scalaire est donc un espace

n>0

préhilbertien complexe.

3°/ R" et C" sont des espaces euclidiens et hermitiens respectivement, munis des produits scalaires canoniques

(90 00) = 2%y, e (), 00) > XXy,



