
2.1 Définitions

Formes bilinéaires et bilinéaires symétriques : Une application ϕ de E×E dans K est  bilinéaire ssi elle est linéaire
par rapport à chaque variable. Si de plus pour tout (x, y) ∈ E×E on a ϕ(x, y) = ϕ(y, x) on dit que ϕ est symétrique.

Formes sesquilinéaires et sesquilinéaire hermitiennes : Une application ϕ de E×E dans c est sesquilinéaire ssi elle
est linéaire par rapport à la première variable et semi-linéaire par rapport à la deuxième. Cela s’exprime par les
identités :

(i) ϕ(x + x’, y) = ϕ(x , y) + ϕ(x’, y)  et ϕ(αx, y) = αϕ(x’, y) ;

(ii) ϕ(x , y + y’) = ϕ(x, y) + ϕ(x, y’)  et  ϕ(x , αy) = α ϕ(x, y).

Si de plus pour tout (x, y) ∈ E×E on a ϕ(x, y) = ),( xyϕ  on dit que ϕ est hermitienne.

formes quadratiques : Une application q de E dans K est une forme quadratique ssi il existe une forme bilinéaire ϕ
telle que q(x) = ϕ(x, x) pour tout x de E. On a alors les identités :

q(αx) = α2q(x);

q(x + y) = q(x) + q(y) + ϕ(x, y) + ϕ(y, x);

q(x + y) - q(x - y) = 2(ϕ(x, y) + ϕ(y, x)) (pour tous x et y de E et tout α de K).

Il y-a une seule forme bilinéaire symétrique ϕ telle que ϕ(x, x) = q(x), définie par :

2ϕ(x, y) = q(x + y) - q(x) - q(y)   ou    4ϕ(x, y) = q(x + y) - q(x - y).

ϕ est appelée forme polaire de q.

formes quadratiques hermitiennes : soit ϕ une forme sesquilinéaire  et posons q(x) = ϕ(x, x) pour tout x de E. On a
alors les identités :

q(αx) = |α|2q(x);

q(x + y) = q(x) + q(y) + ϕ(x, y) + ϕ(y, x);

q(x + y) - q(x - y) + iq(x + iy) - iq(x - iy) = 4ϕ(x, y) (pour tous x et y de E et tout α de K);

q étant donnée la forme sesquilinéaire ϕ telle que ϕ(x, x) = q(x) est définie de façon unique par :

4ϕ(x, y) = q(x + y) - q(x - y) + iq(x + iy) - iq(x - iy).

On dit qu’une application q de E dans c est une forme quadratique hermitienne  ssi il existe une forme
sesquilinéaire hermitienne ϕ telle que, pour tout x de E, on ait : q(x) = ϕ(x, x). On a alors ∀  x ∈ E : q(x) ∈ r.

ϕ est unique et est appelée forme polaire de q.

matrice de ϕ : Soit ϕ une forme bilinéaire ou sesquilinéaire et si B = (ei) (1 ≤ i ≤ n) est une base de E la matrice

Ω = (ϕ (ei, ej))i,j est appelée matrice de ϕ dans la base B.

Si X et Y sont les coordonnées de x et y dans cette base on vérifie que :

ϕ(x, y) = tXΩY si ϕ est bilinéaire  et ϕ(x, y) = tXΩ Y  si ϕ est sesquilinéaire.

Exercice 16

1°/ Soit q une forme quadratique. Dans une base de E si x ∈ E a pour coordonnées (x1, ... , xn) montrer que
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Montrer que la forme polaire de q a pour matrice M = (αi,j) avec αi,i = ai,i et αi,j = αj,i = ai,j/2 si i ≠ j.

2°/ Si q une forme quadratique hermitienne montrer que :
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Montrer que la forme polaire de q a pour matrice M = (ai,j).

Changements de bases : si B’ = (fi) est une autre base et si P est la matrice de passage de B à B’ la matrice Ω ’ de ϕ
dans la base B’ est donnée par : Ω ’ = tP.Ω.P   (resp.  Ω ’ = tP.Ω. P  si ϕ est sesquilinéaire).

(En effet dans le cas où ϕ est sesquilinéaire et si X et Y sont les coordonnées de x et y dans la base B et X’ et Y’ leurs
coordonnées dans la base B’ on a X = PX’ et Y = PY’ donc :

ϕ(x, y) = tXΩY  = t(PX’)Ω( 'PY ) = tX’(tPΩ P ) 'Y  =  tX’Ω' 'Y    (où Ω ' est la matrice de ϕ dans la base B’).

L’égalité étant valable pour tous X’ et Y’ de Kn on en déduit que la matrice Ω' de ϕ dans la base B’ est tPΩP).

Orthogonalité : soit ϕ une forme bilinéaire symétrique ou sesquilinéaire hermitienne; on dit que x et y de E sont
orthogonaux par rapport à ϕ ssi ϕ(x, y) = 0. Si A est une partie quelconque de E l’orthogonal de A est la partie de E
notée A⊥ et définie par : A⊥  = {x ∈ E / ∀  y ∈ A : ϕ(x, y) = 0}. Noter que si A est non vide, A⊥  est toujours un sous-
espace vectoriel de E même si A ne l’est pas.

Cône isotrope : avec les notations précédentes le cône isotrope de ϕ est défini par :

C(ϕ) = {x ∈ E / ϕ(x, x) = 0} (c’est donc l’ensemble des x orthogonaux à eux même).

Positivité : une forme bilinéaire symétrique ou sesquilinéaire hermitienne ϕ est positive ssi pour tout x de E on a

ϕ(x, x) ≥  0.

Formes définies : une forme bilinéaire symétrique ou sesquilinéaire hermitienne ϕ est définie ssi on a :

ϕ(x, x) = 0  ⇒  x = 0.

C’est équivalent à dire que son cône isotrope est réduit à {0}.

Propriété : soit ϕ une forme bilinéaire symétrique ou sesquilinéaire hermitienne positive.

(i) Si ϕ est positive alors, pour tout (x, y) ∈ E on a :

|ϕ(x, y)| ≤ (q(x).q(y))1/2   (inégalité de Cauchy-Schwarz). Il y a égalité si x et y sont colinéaires.

(ii) Si de plus ϕ est définie alors l’application x  (ϕ(x, x))1/2 est une norme et il y a égalité dans l’inégalité précédente
ssi x et y sont colinéaires.

Démonstration de la propriété :

(i) Soit ϕ une forme bilinéaire symétrique et (x, y) ∈ E×E. Pour tout λ ∈ r on a ϕ(λx + y, λx + y) ≥  0 soit
λ2q(x) + 2λϕ (x, y) + q(y) ≥ 0. Si q(x) = 0 on a λϕ(x, y) + q(y) ≥  0 pour tout λ de r donc on en déduit aisément que

ϕ(x, y)  = 0 et l’inégalité est vérifiée. Si q(x) ≠ 0 on a un trinôme du second degré toujours ≥  0 donc son discriminant
réduit δ = (ϕ(x, y))2 - q(y)q(x) est ≤ 0 ce qui démontre l’inégalité.

Soient x et y colinéaires. Si x ou y est nul l’inégalité précédente est une égalité. Sinon il existe λ ∈ K tel que λx + y = 0
et le trinôme précédent a une solution donc δ = 0 soit |ϕ(x, y)| = (q(x).q(y))1/2.

Si ϕ est une forme sesquilinéaire hermitienne. On a  ϕ(λx + y, λx + y) ≥  0 pour tout λ complexe soit

|λ|2a + 2Re(λb) + c ≥  0  (*)  en posant a = q(x) (∈ r), b = ϕ(x, y) et c = q(y).

Posons b = |b|.eiθ. En remplaçant λ par t e-iθ dans l'inégalité précédente on obtient pour tout t :

ϕ( te-iθx + y, te-iθx + y) = t2a + 2t.|b| + c ≥  0.

Si a est non nul on a un polynôme du second degré toujours positif ou nul et on en déduit comme précédemment
l'inégalité demandée.

Si x et y sont colinéaires non nuls il existe λ0 ∈ c tel que λ0x + y = 0 soit ϕ(t0e
-iθx + y, t0e

-iθx + y) = 0 avec t0 = λ0 e
iθ.

Le discriminant du trinôme t2a + 2t.|b| + c est nul, soit |b|2 = ac et l’inégalité de Cauchy-Schwarz est une égalité.



(ii) Supposons ϕ sesquilinéaire hermitienne définie positive et posons N(x) = (q(x))1/2 pour tout de E. On a
N(x) = 0  ssi  x = 0 et N(λx) = |λ|N(x). Il reste à prouver l’inégalité triangulaire : N(x + y) ≤ N(x) + N(y). Elle équivaut
à q(x + y) ≤ [(q(x))1/2 + q(y)1/2]2  soit à q(x) + q(y) + 2 Reϕ(x, y) ≤ q(x) + q(y) + 2[q(x)q(y)]1/2 ou encore à  :
Reϕ(x, y) ≤ [q(x)q(y)]1/2 et cette dernière inégalité résulte de l’inégalité de Cauchy-Schwarz puisque :

Reϕ(x, y) ≤ |ϕ(x, y)|.

Avec les notations précédentes si l’inégalité de Cauchy-Schwarz est une égalité et si a ≠ 0, (**) montre que

ϕ(λx + y, λx + y) = 0 pour λ = ab /−  soit λx + y = 0. Si c ≠ 0 on obtient de même une relation x + µy = 0 et si
a = c = 0 on a x = y = 0. Dans tous les cas x et y sont liés.

Une forme bilinéaire symétrique 5ou sesquilinéaire hermitienne) définie positive s’appelle un produit scalaire de E.

Un espace vectoriel réel E muni d’une forme bilinéaire symétrique définie positive s’appelle espace préhilbertien
réel ; un espace vectoriel complexe muni d’une forme sesquilinéaire hermitienne définie positive E s’appelle espace
préhilbertien complexe. Si ces espaces sont de dimension finie on les appelle respectivement espaces euclidien et
espaces hermitiens.

La norme associée (||x|| = (ϕ(x, x))1/2 s’appelle norme euclidienne dans le premier cas et norme hermitienne dans le
second.

Exemples : 1°/ Soit I un intervalle de r non réduit à un point et ω une fonction continue et strictement positive sur

l’intérieur de I telle que, pour tout entier n, on ait +∞<∫
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Ainsi E muni de ce produit scalaire est un espace préhilbertien complexe.

(Le fait que E soit un espace vectoriel résulte de l’inégalité |f + g|2 ≤2(|f|2 + |g|2)).

2°/ Soit l2(n) l’ensemble des suites (xn) complexes telles que ∑
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l’application ((xn), (yn)) → ∑
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nn yx  est un produit scalaire. l2(n) munit de ce produit scalaire est donc un espace

préhilbertien complexe.

3°/ rn et cn sont des espaces euclidiens et hermitiens respectivement, munis des produits scalaires canoniques
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