
2.2 Dégénérescence
Soit ϕ une forme bilinéaire symétrique ou sesquilinéaire hermitienne. L’application Φ de E dans le dual E* de E qui à
y ∈ E associe la forme linéaire ϕ(. , y) est linéaire si K = r et semi-linéaire si K = c .

Définition : on dit que ϕ est dégénérée ssi l’application Φ est non injective.

Le noyau de Φ est appelé noyau de ϕ ; on a donc :

Ker Φ = Ker ϕ = {y ∈ E / ∀  x ∈ E : ϕ(x, y) = 0} = E⊥.

et : ϕ dégénérée  ⇔  Ker ϕ ≠ {0}.

Si E est muni d’une base B = (ei) et si E* est muni de la base duale de B la matrice de Φ dans ces bases est Ω, matrice
de ϕ dans la base B. Si on identifie E à Kn grâce à cette base on a :

Ker ϕ  = {Y ∈ rn / ΩY = 0} = Ker Ω (cas réel) et Ker ϕ  = {Y ∈ cn / ΩY = 0} = Ker Ω  (cas complexe)  et  :

ϕ non dégénérée  ⇔  Dét Ω ≠ 0.

Le rang de ϕ est celui de Φ et c’est donc aussi le rang de la matrice Ω.

Remarque : puisque E est de dimension finie, si ϕ est non dégénérée l’application Φ est un isomorphisme de E dans
E*.

Propriétés : Soit ϕ une forme bilinéaire symétrique ou sesquilinéaire hermitienne.

(i) On a Ker ϕ  ⊂ C(ϕ)  (cône isotrope de ϕ ). En particulier on a  :

ϕ  définie  ⇒  ϕ  non dégénérée;

(ii) Si ϕ est positive on a : Ker ϕ  = C(ϕ). Dans ce cas on a donc :

ϕ  définie  ⇔  ϕ  non dégénérée.

Démonstration :

(i) Si x ∈ Ker ϕ on a ϕ(x, y) = 0 pour tout y de E. En prenant y = x on a ϕ(x, x) = 0 soit x ∈ C(ϕ). Donc Ker ϕ ⊂ C(ϕ).

(ii) Si ϕ est positive x ∈ C(ϕ), pour tout y de E on a |ϕ(x, y)| ≤ (q(x)q(y))1/2 d’après l’inégalité de Cauchy-Schwarz,
soit ϕ(x, y) = 0 pour tout y de E donc x ∈ Ker ϕ et Ker ϕ = C(ϕ) d'après (i).

Le théorème suivant donne une condition nécessaire et suffisante pour que E se décompose en somme directe
orthogonal de deux sous-espaces vectoriels :

Théorème : Soit F un sous-espace vectoriel de dimension finie de E et ϕ une forme bilinéaire symétrique ou
sesquilinéaire hermitienne. Les conditions suivantes sont équivalentes :

(i) La restriction de ϕ à F×F est non dégénérée;

(ii) E = F ⊕ F⊥.

Démonstration :

(i) ⇒ (ii) :  soit z ∈ E; l’application x  ϕ(x, z) est une forme linéaire sur F; comme ϕ /F×F est non dégénérée,
l’application Φ de F dans F* est un isomorphisme donc il existe y0 ∈ F unique tel que ϕ (x, z) = ϕ (x, y0) pour tout x de
F, soit : ϕ(x, z - y0) = 0. On a donc z - y0 ∈ F⊥ et z = y0 + (z - y0) ce qui prouve que E = F + F⊥.

Enfin  F∩ F⊥  =  Ker ϕ/F×F = {0} par hypothèse donc E = F ⊕ F⊥ .

(ii) ⇒ (i) : résulte de F∩ F⊥ = Ker ϕ/F×F. 

Remarque : avec les hypothèses du théorème précédent on a : dim F⊥ = n - dim F. Comme on a toujours F ⊂ F⊥⊥ on
en déduit que F⊥⊥ = F.




