
2.3 Réduction des formes quadratiques

Dans ce qui suit E est un espace vectoriel de dimension finie.

2.3.1 Cas général

Théorème : soit ϕ une forme bilinéaire symétrique sur un corps K de caractéristique différente de 2 ou sesquilinéaire
hermitienne avec K = c. Alors il existe une base de E orthogonale pour ϕ.

Démonstration : si n = 1 le résultat est évident. Supposons le vrai pour n et soit E un espace vectoriel de dimension
n + 1. Si ϕ(x, x) = 0 pour tout x de E alors ϕ = 0 et toute base est orthogonale. Sinon soit x de E tel que ϕ(x, x) ≠ 0. La
restriction de ϕ à K.x est non dégénérée et donc E = Kx ⊕ F avec F = (K x)⊥ d’après le théorème du 2.2. D’après
l’hypothèse de récurrence il existe une base B = (e1, ... , en) de F qui est orthogonale pour la restriction de ϕ à F×F.
Alors (x, e1, ... , en) est une base de E orthogonale pour ϕ.

2.3.2 Cas des formes quadratiques sur r

Théorème : soit ϕ une forme bilinéaire symétrique sur r et q sa forme quadratique associée.

(i) Il existe une base B de E dans laquelle, si x ∈ E a pour coordonnées (x1, x2, ... , xn) dans cette base, on ait :
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(ii) Si q = r - p dans l’écriture précédente, le couple (p, q) ne dépend pas de la base orthogonale et r = p + q est le rang
de ϕ; si r < n, les vecteurs isotropes er+1, ... , en de B forment une base du noyau de ϕ;

(iii) Il existe une base orthogonale (appelée base réduite) dans laquelle ϕ s’écrit :
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Démonstration :

(i) dans une base (e1, ... , en) de E orthogonale pour ϕ (théorème de 2.3.1) telle que ϕ(ej, ej) > 0 pour j ∈ {1, ... , p},

ϕ(ej, ej) <0 pour j ∈ {p+1, ... , r} et ϕ(ej, ej) = 0 pour j > r on a : ϕ(x, x) = ∑ ∑
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(ii) soit p’ la plus grande des dimensions des sous-espaces vectoriels F tels que la restriction de ϕ à  F×F est définie
positive. Comme la restriction de ϕ à < e1, ... , ep> est définie positive on a p ≤ p’.

Soit H de dimension p’ l’un des sous-espaces vectoriels pour lequel la restriction de ϕ à H est définie positive. Soit
G = < ep+1, ... , en> ; on a ϕ(x, x) ≤ 0 pour tout x de G donc H ∩ G = {0} et la somme H + G est directe dans E soit :
p’ + (n - p) ≤  n ou p’ ≤ p. Par conséquent p = p’.

De même si q’ est la plus grande des dimensions des sous-espaces vectoriels V tels que la restriction de ϕ à V×V est
définie négative on montre que q = r - p est égal à q’. Le couple (p, q) ne dépend donc pas de la base choisie.

D’autre part dans la base définie au (i) la matrice de ϕ est M = 
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 donc le rang de ϕ, égal au rang de M, est égal à r = p + q et si r < n le noyau de ϕ admet

(er+1, ... , en) pour base.
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 est orthogonale pour ϕ et dans cette base on a
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2.3.3 Cas des formes hermitiennes

Théorème : soit ϕ une forme sesquilinéaire hermitienne sur c et q sa forme quadratique hermitienne associée.

(i) Il existe une base B de E dans laquelle, si x ∈ E a pour coordonnées (x1, x2, ... , xn) dans cette base, on ait :

ϕ(x, x) = q(x) = ∑ ∑
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(ii) Si q = r - p dans l’écriture précédente, le couple (p, q) ne dépend pas de la base orthogonale et r = p + q est le rang
de ϕ; si r < n, les vecteurs isotropes er+1, ... , en de B forment une base du noyau de ϕ;

(iii) Il existe une base orthogonale (appelée base réduite) dans laquelle ϕ s’écrit :
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Le théorème se démontre de la même façon que le précédent.

Remarques : dans les deux théorèmes précédents :

Les bases B et les bases réduites sont des bases orthogonales pour ϕ ;

Dans 2.3.2 ou 2.3.3 le couple (p, q) s’appelle signature de ϕ (ou de q forme quadratique associée à ϕ). ϕ est non
dégénérée ssi p + q = n ; ϕ est positive ssi la signature de ϕ est (p, 0) ; ϕ définit un produit scalaire ssi la signature
de ϕ est (n, 0) ;

On peut obtenir la décomposition précédente par la méthode de Gauss (voir exercice suivant).

Exercice 17

1°/ Décomposer les formes quadratiques de r3 suivantes en somme de carrés de formes linéaires indépendantes par la
méthode de Gauss; en déduire leur rang et leur signature :

a/ q(x) = )( 323121
2
3

2
2

2
1 xxxxxxxxx ++−++ ;

b/ q(x) = )sincos(2 213
2
2

2
1 λλ xxxxx +++   (λ réel donné);

c/ q(x) = x1x2 + 2 x2x3  + 3x3x1. 

2°/ Mêmes questions avec les formes quadratiques hermitiennes :

a/ q(x) = 1221 xxxx +   (dans c2);

b/ q(x) = 332332122111 22 xxxxixxixixxixxx +−+−+  .

2.3.4 Orthonormalisation de Gram-Schmidt

Exercice 18 : procédé d’orthonormalisation de Gram-Schmidt

Soit (E, ϕ) un espace euclidien ou hermitien et (e1, ... , en) une base de E. Montrer qu’il existe une base (f1, ... , fn)
orthogonale pour ϕ vérifiant la condition (*) : Vect(e1, ... , ek) = Vect(f1, ... , fk) pour tout entier k ∈ {1, ... , n}. Pour

tout entier k ≥  1, les fk sont donnés par fk = 
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α  où αk est un scalaire non nul. De plus on peut

prendre (f1, ... , fn) orthonormé.

Il existe enfin une unique base (f1, ... , fk) orthonormée, vérifiant (*), et la condition supplémentaire : ϕ(ek, fk) > 0 pour
tout entier k ∈ {1, ... , n}.

Exercice 19 : polynômes orthogonaux

https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex17.pdf
https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex18.pdf
https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex19.pdf


Soit I un intervalle de r non réduit à un point et ω une fonction continue et strictement positive sur l’intérieur de I

telle que, pour tout entier n, on ait +∞<∫
I

n dttt )(ω .

1°/ Montrer que dans l’espace vectoriel E = {f ∈ C(I, r) / +∞<∫
I

dtttf )()(
2ω }, l’application

(f, g)  ∫
I

dtttgtf )()()( ω est un produit scalaire.

2°/ Montrer qu’il existe une unique suite (Pn) de polynômes unitaires de degré n tels que, pour tout n de n*, Pn est
orthogonal à rn-1[x], espace vectoriel des polynômes de degré inférieur ou égal à n.

Montrer que et que  ∀  n ∈ n*,  Pn = ∑
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x et que pour tout n ≥  3 il existe (αn, βn) ∈ r×r tel que

Pn = (x - αn)Pn-1 - βnPn-2.

3°/ Montrer que pour tout entier n ≥ 1, Pn possède n racines réelles distinctes, intérieures à I.

4°/ Application : si ω = 1 et I = [-1 ; 1] on obtient la suite des polynômes Pn de Legendre et on a
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Exercice 20

Soit M une matrice symétrique réelle de type n×n. Montrer que M définit un produit scalaire ssi les mineurs principaux
sont strictement positifs (raisonner par récurrence sur n).

Exercice 21 : décomposition QR d’une matrice

Soit A une matrice carrée inversible à coefficients réels. Montrer qu’il existe un couple unique (Q, R) de matrices
réelles avec Q orthogonale, R triangulaire supérieure à coefficients diagonaux > 0 tel que A = QR.

Montrer que si A est sous la forme QR, on peut résoudre facilement le système linéaire AX = B (avec B ∈ rn).

Exercice 22

1°/ Soit M une matrice symétrique réelle définissant un produit scalaire. Prouver qu’il existe une unique matrice
triangulaire supérieure  à coefficients diagonaux > 0 telle que M = tTT (décomposition de Choleski)  (utiliser le
procédé d’orthogonalisation de Gram-Schmidt).

Si M est symétrique et positive (i.e. tXMX ≥  0 pour tout X ∈ rn) montrer que dét(M) ≤ 
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2°/ M = (ai,j) désignant une matrice quelconque de Mn(r) montrer que :
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,      (inégalité d'Hadamard).

https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex20.pdf
https://maths-corsica.fr/AgregInterne/Algebrelineaire/ex21.pdf
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