2.3 Réduction des formes quadratiques
Dans ce qui suit E est un espace vectoriel de dimension finie.
2.3.1 Casgénéral

Théoréme: soit ¢ une forme bilinéaire symétrique sur un corps K de caractéristique différente de 2 ou sesquilinéaire
hermitienne avec K = C. Alorsil existe une base de E orthogonale pour ¢.

Démonstration : si n =1 lerésultat est évident. Supposons le vrai pour n et soit E un espace vectoriel de dimension
n+ 1. S ¢(x, X) = 0 pour tout x de E alors ¢ = 0 et toute base est orthogonale. Sinon soit x de E tel que ¢(x, X) 0. La
restriction de ¢ aK .x est non dégénérée et donc E = Kx @ F avec F = (K X)" d’ aprés le théoréme du 2.2. D’ aprés

I" hypothése de récurrenceil existe une base B = (e, ..., €,) de F qui est orthogonale pour larestriction de ¢ a FxF.
Alors (x, ey, ..., €,) est une base de E orthogonale pour ¢.

2.3.2 Casdesformes quadratiquessur R
Théoréme: soit ¢ une forme bilinéaire symétrique sur IR et q saforme quadratique associée.
(i) 1l existe une base B de E danslaquelle, si x € E apour coordonnées (X1, Xo, ... , X,) dans cette base, on ait :
P r
g% %) =D AX - D AX ollesréels A sont > O;
k=1 k=p+1

(i) Sig=r - pdans|’ écriture précédente, le couple (p, g) ne dépend pas de |a base orthogonale et r = p + g est lerang
deo; Si r <n, lesvecteursisotropes €., ... , €, de B forment une base du noyau de ¢;

(iii) 1l existe une base orthogonal e (appel ée base réduite) dans laquelle ¢ S écrit :
P r
g%, X) = D xE— > X
k=1 k=p+1
Démonstration :

(i) dans une base (e, ..., €,) de E orthogonale pour ¢ (théoréme de 2.3.1) telle que ¢(g, §) >0 pourj € {1, ..., p},

o(e, ) <Opourj € {p+l, .., r} et (g, ) =0pourj>rona: ¢ X) = Zp:/lkxf - Zr:ﬂkxf.
k=1

k=p+1

(ii) soit p’ la plus grande des dimensions des sous-espaces vectoriels F tels que larestriction de ¢ a FxF est définie
positive. Comme larestriction de p a<e, ..., €,> est définie positiveonap < p’.

Soit H de dimension p’ I” un des sous-espaces vectoriels pour lequel larestriction de ¢ aH est définie positive. Soit
G =<6y, ..., &>;0nag(x x) < 0pour tout x de G donc H N G = {0} et lasommeH + G est directe dans E soit :
pP+(n-p)<noup <p.Parconséquentp=p'.
Demémesi g est laplus grande des dimensions des sous-espaces vectoriels V tels que larestriction de ¢ a VxV est
définie négative on montreque g =r - p et égal aq'. Le couple (p, g) ne dépend donc pas de la base choisie.
Dl /11
D’ autre part dans la base définie au (i) lamatrice de g est M = D, avec D, = ,
n-r P
_A’erl

D, = donc lerang de ¢, égal aurangde M, est égal ar = p + g et si r < nlenoyau de ¢ admet

_Ar
(&+1, -.- , €) pour base.
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labase { J est orthogonale pour ¢ et dans cette base on a
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2.3.3 Cas des formes her mitiennes
Théoréme : soit ¢ une forme sesquilinéaire hermitienne sur C et g saforme quadratique hermitienne associée.
(i) Il existe une base B de E dans laquelle, si x € E apour coordonnées (X;, Xy, ... , X,) dans cette base, on ait :

Zr:/lk|xk|2 ol lesréels 4 sont > 0;

k=p+1

0% X) = (¥) = kizklxkf

(i) Sig=r - pdans|’ écriture précédente, le couple (p, g) ne dépend pas de la base orthogonale et r = p + g est lerang
de @; si r <n, les vecteurs isotropes €.y, ... , € de B forment une base du noyau de ¢;

(iii) 1l existe une base orthogonal e (appel ée base réduite) dans laquelle ¢ S écrit :
A% 0 =0 = Dlx[ - Y[’
k=1 k=p+l
L e théoreme se démontre de la méme fagon que | e précédent.
Remarques : dans les deux théorémes précédents :
Les bases B et |es bases réduites sont des bases orthogonales pour ¢ ;

Dans 2.3.2 ou 2.3.3 le couple (p, g) s appelle signature de ¢ (ou de q forme quadratique associée a ¢). ¢ est non
dégénéréessi p+q=n; ¢ est positive ssi lasignature de g est (p, 0) ; ¢ définit un produit scalaire ssi la signature
degpest(n, 0);

On peut obtenir la décomposition précédente par |a méthode de Gauss (voir exercice suivant).

1°/ Décomposer les formes quadratiques de IR® suivantes en somme de carrés de formes linéaires indépendantes par |a
méthode de Gauss; en déduire leur rang et leur signature :

alq(xX) = XX+ X+ X — (XX, + XX, + X, X,) ;
b/ q(X) = XZ + X5 +2x%,(X, cosA +X,Sin 1) (A réel donné);
¢/ g(X) = X1 X2 + 2 XoX3 + 3X3Xg.
2°/ Mémes questions avec les formes quadratiques hermitiennes :
al q(X) = XX, + X, %, (dans C?);
b q(X) = X, X, +iX, X, — 1%, X, +iv2%, X, —iv/2%, X, + X, X, -
2.3.4 Orthonormalisation de Gram-Schmidt
| Exercice 18 : procédé d' orthonormalisation de Gram-Schmidi |

Soit (E, ¢) un espace euclidien ou hermitien et (e, ... , €,) une base de E. Montrer qu’il existe une base (fy, ... , )

orthogonale pour ¢ vérifiant la condition (*) : Vect(ey, ..., &) = Vect(fy, ..., f) pour tout entier k € {1, ..., n}. Pour
. . _ = (/)(ek; fj) N .
tout entier k > 1, lesf, sont donnés par fy = «, | €, _ZW f, | ol oy est un scalaire non nul. De plus on peut
-1 f.
]

prendre (f, ... , f,) orthonormé.

Il existe enfin une unique base (fy, ... , f) orthonormée, vérifiant (*), et la condition supplémentaire : ¢(e, fi) > 0 pour
tout entier k € {1, ..., n}.

Exercice 19 : polyndémes orthogonaux
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Soit | un intervalle de IR non réduit & un point et  une fonction continue et strictement positive sur I’ intérieur de |

telle que, pour tout entier n, on ait <400,

j t"e(t)dt

1°/ Montrer que dans |’ espace vectoriel E={f € C(I, R) / j| f (1)) @(t)dt < +0}, I"application
|
(f,9) > f f(t)g(t)e(t)dt est un produit scalaire.
|

2°/ Montrer qu'il existe une unique suite (P,) de polyndmes unitaires de degré n tels que, pour tout n de IN*, P, est
orthogonal aIR.1[X], espace vectoriel des polyn()mes de degré inférieur ou égal an.

Montrer queet que V n € IN*, P, = z(

X5 R P et que pour tout n > 3l existe (an, fn) € RxIR tel que

Pn= (X - an)Pn—l = fnPhn.2.
3°/ Montrer que pour tout entier n > 1, P, possede n racines réelles distinctes, intérieures al.
4°/ Application : st w=1et | =[-1; 1] on obtient la suite des polynémes P, de Legendre et on a

— 1 dn 2_ n
Pn= 2"n! dx" (X 1) '

Soit M une matrice symétrique réelle de type nxn. Montrer que M définit un produit scalaire ssi les mineurs principaux
sont strictement positifs (raisonner par récurrence sur n).

Exercice 21 : décomposition QR d' une matrice

Soit A une matrice carrée inversible a coefficients réels. Montrer qu’il existe un couple unique (Q, R) de matrices
réelles avec Q orthogonale, R triangulaire supérieure a coefficients diagonaux > 0 tel que A= QR.

Montrer que si A est sous laforme QR, on peut résoudre facilement le systéme linéaire AX = B (avec B € R").

1°/ Soit M une matrice symétrique réelle définissant un produit scalaire. Prouver qu’il existe une unique matrice
triangulaire supérieure a coefficients diagonaux > 0 telle que M = 'TT (décomposition de Choleski) (utiliser le
procédé d’ orthogonalisation de Gram-Schmidt).

Si M est symétrique et positive (i.e. XMX > 0 pour tout X € R") montrer que dét(M) < [ [ a,; .
i=1

2°/ M = (&) désignant une matrice quelconque de M,(IR) montrer que :

|dét(M)] <

H{Z a j (inégalité d' Hadamard).
i<\ j=1
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