1.3 Cas des fonctions de plusieurs variables

<u>Définition 1</u>: si $E = \mathbb{R}^n$ ou \mathbb{C}^n , on dit que f est une fonction de plusieurs variables.

Si $a = (a_1, ..., a_n) \in U$ les n fonctions $f_i : t \mapsto f(a_1, ..., a_{i-1}, t, a_{i+1}, ..., a_n)$ $(i \in \{1, ..., n\})$ sont appelées fonctions partielles au point a.

Si f est définie dans un ouvert de K^n , les fonctions f_i sont définies dans un ouvert de K.

Définition 2: on appelle *j-ième dérivée partielle de f en a* la dérivée, lorsqu'elle existe, de la fonction partielle f_i en a_i .

On la note $D_f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$ ou $\partial_f(a)$. C'est un élément de F. Par définition on a donc :

$$D_{j}f(a) = \lim_{h \to 0} \frac{f(a_{1},...,a_{i-1},a_{i}+h,...,a_{n}) - f(a_{1},...,a_{i-1},a_{i},...,a_{n})}{h}.$$

<u>Définition 3</u>: si f admet une j-ième dérivée partielle en tout point de U, l'application $D_j: U \to F$ qui à $a \in U$ associe $D_j f(a)$ s'appelle j-ième dérivée partielle de f dans U.

On la note aussi $\frac{\partial f}{\partial x_i}$ ou $\partial_j f$. C'est donc une application de U dans F.

<u>Proposition</u>: si f est différentiable au point a, alors f admet au point a n dérivées partielles $D_j f(a)$ $(1 \le j \le n)$ et de plus on a pour tout élément (h_1, \ldots, h_n) de K^n :

$$df(a)(h_1, ..., h_n) = \sum_{k=1}^n \frac{\partial f}{\partial x_k} (a) h_k$$
.

Si on note (dx_k) $(1 \le k \le n)$ la base duale de la base canonique de \mathbb{R}^n la formule précédente peut s'écrire :

$$df(a) = \sum_{k=1}^{n} dx_k \frac{\partial f}{\partial x_k} (a).$$

<u>Démonstration</u>: (e_i) désignant la base canonique de K^n on a pour |h| suffisamment petit et $1 \le j \le n$:

$$f(a_1, \ldots, a_{i-1}, a_i + h, a_{i+1}, \ldots, a_n) = f(a) + df(a)(he_i) + o(h)$$

Soit $f(a_1, ..., a_{i-1}, a_i + h, a_{i+1}, ..., a_n) = f(a) + h.df(a)(e_i) + o(h)$.

Il s'ensuit que f admet une dérivée j-ième dérivée partielle en a et $\frac{\partial f}{\partial x_j}(a) = df(a)(e_j)$. Comme

 $df_a(h_1, ..., h_n) = \sum_{k=1}^n h_k .df(a)(e_k)$ on obtient la formule annoncée.

Remarques:

La réciproque est fausse. Par exemple si $E = \mathbb{R}^2$, $F = \mathbb{R}$ et f définie par $f(x, y) = \frac{xy}{x^2 + y^2}$ si $(x, y) \neq (0, 0)$ et f(0, 0) = 0.

Comme f(x, x) = 1/2 pour $x \ne 0$ f n'est pas continue en (0, 0) donc pas différentiable en (0; 0); pourtant f admet des dérivées partielles nulles en 0 (les deux fonctions partielles en (0; 0) étant nulles).

Si (e_k) $(1 \le k \le n)$ est la base canonique de \mathbb{R}^n on $a \, df(a)(e_k) = \frac{\partial f}{\partial x_k}(a)$.

<u>Cas où $E = \mathbb{R}^n$ et $F = \mathbb{R}^n$ </u>: on a alors $f = (f_1, \dots, f_p)$ où les fonctions f_k de U dans \mathbb{R} sont différentiables en a (d'après 1.2) et $df(a) = (df_1(a), \dots, df_p(a))$. La matrice de d(f)(a) dans les bases canoniques de \mathbb{R}^n et de \mathbb{R}^p est donc d'après la

$$\text{deuxième remarque précédente}: \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \cdots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \frac{\partial f_p}{\partial x_2}(a) & \cdots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_i}{\partial x_j}(a) \\ \frac{|\mathbf{f}| \leq p}{|\mathbf{f}| \leq p} \end{pmatrix}. \text{ Elle est appelée } matrice$$

jacobienne de f en a et se note $J_f(a)$.