1.5 Morphismes de groupes

<u>Définitions</u> : Si (G, \star) et (G', \wedge) sont deux groupes, une application f de G dans G' est un *morphisme de groupes* de G dans G' ssi $\forall (x, y) \in G \times G$, $f(x \star y) = f(x) \wedge f(y)$.

f est un isomorphisme ssi f est un morphisme bijectif;

f est un endomorphisme de G ssi f est un morphisme de G dans lui-même;

f est un *automorphisme* de G ssi f est à la fois un isomorphisme et un endomorphisme.

Exercice 12

 1° / L'ensemble des automorphismes d'un groupe G est un groupe pour la composition des applications, noté Aut(G).

2°/ Pour $a \in G$ donné, l'application $f_a : x \mapsto axa^{-1}$ de G dans G est un automorphisme de G appelé automorphisme intérieur de G. L'ensemble Int(G) des automorphismes intérieurs de G est un sous-groupe de Aut(G).

L'application de G dans Int(G) qui à a associe f_a est un morphisme de groupes dont le noyau est $Z(G) = \{x \in G \mid ax = xa\}$ (appelé *centre de G* : voir l'exercice 19).

Exercice 13

Montrer que $\mathbb{Z}/4\mathbb{Z}$ n'est pas isomorphe à $\mathbb{Z}2\mathbb{Z}\times\mathbb{Z}2\mathbb{Z}$.

Exercice 14

Le groupe $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ (voir exercice 12) est isomorphe à $(\mathbb{Z}/n\mathbb{Z})^*$ (voir exercice 1).

<u>Propriétés</u>: (i) Si f et g sont des morphismes de groupes de G dans G' et G' dans G'' respectivement, alors $g \circ f$ est un morphisme de G dans G''

(ii) Si f est un morphisme de G dans G':

l'image par f de l'élément neutre e de G est l'élément neutre e' de G';

f(G) est un sous-groupe de G';

 $f^{-1}(e^{\prime})$ est un sous-groupe de G (appelé noyau de f et noté Kerf).

Remarque: $Ker f = \{e\} \Leftrightarrow f \text{ injectif.}$