2.1 Définitions; propriétés

Un espace métrique (*E*, *d*) est *compact* ssi de tout recouvrement de *E* par des ouverts on peut en extraire un sous-recouvrement fini.

Autrement dit si (U_i) $(i \in I)$ est une famille d'ouverts telle que $\bigcup_{i \in I} U_i = E$, alors il existe une partie finie J de I telle que $\bigcup_{i \in I} U_i = E$.

Cette définition a l'avantage d'être valable dans un espace topologique quelconque. On donnera au 2.2 des caractérisations pratiques dans les espaces métriques.

Exemples: \mathbb{R} n'est pas compact (considérer le recouvrement]n-1; n+1[).

 $\mathbb{R} \cup \{+\infty; -\infty\}$ est compact.

Exercice 4

Montrer qu'un espace métrique *E* est compact ssi pour tout ensemble de parties fermées de *E* dont l'intersection est vide il existe un nombre fini de ces parties dont l'intersection est vide.

Exercice 5

Si E est un espace métrique compact et si (F_n) $(n \in \mathbb{N})$ est suite décroissante de fermés dont l'intersection est vide, il existe $p \in \mathbb{N}$ tel que $F_p = \emptyset$.