PTSI TD

ESPACES EUCLIDIENS

E désigne un espace vectoriel muni d'un produit scalaire.

|1| Pour tous vecteurs x et y de E montrer que :

 $||x+y||^2 = ||x||^2 + ||y||^2$ ssi x et y sont orthogonaux (Théorème de Pythagore).

 $\boxed{2}$ Soit p la projection sur un sous-espace vectoriel F de E et parallèlement à un sous-espace vectoriel G.

Montrer que l'on a : $\forall x \in E : ||p(x)|| \le ||x||$ si et seulement si p est une projection orthogonale.

(Indication: pour λ réel et x_1 et x_2 appartenant à F et G respectivement écrire:

$$||p(x_1 + \lambda x_2)||^2 \le ||x_1 + \lambda x_2||^2$$
).

 $\fbox{3}$ Soit F un sous-espace vectoriel euclidien E de . Montrer que $F\subset F^{\perp\perp}$. En déduire que $F=F^{\perp\perp}$.

 $\boxed{4}$ Soit E l'espace vectoriel des fonctions continues sur [-1,1] muni du produit scalaire défini par : $\langle f,g\rangle = \int_{-1}^{1} f(t) g(t) dt$.

Soit \mathcal{I} et \mathcal{P} les sous-espaces vectoriels de E des fonctions impaire et paires.

- **1.** Montrer que $E = \mathcal{I} \oplus \mathcal{P}$.
- **2.** Quel est l'orthogonal de \mathcal{I} ? de \mathcal{P} ?

5 Soit F un sous-espace vectoriel de E. Soit (e_1, \ldots, e_p) une base orthonormée de F. Soit p la projection orthogonale sur F. Montrer que pour tout vecteur x de E on a :

$$p(x) = \sum_{k=1}^{p} \langle x, e_k \rangle e_k.$$

Application numérique : dans un espace vectoriel euclidien de dimension 3 muni d'une base orthonormée trouver les formules analytiques et la matrice de la projection orthogonales sur le plan d'équation x - 2y + z = 0. On commencera par trouver une base orthonormée de ce plan.

6 1. Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des fonctions polynômes de degré inférieur ou égal à n. Soient n+1 nombres réels a_0, a_1, \ldots, a_n deux à deux distincts. Montrer que l'application $(f,g) \longmapsto \sum_{k=0}^{n} f(a_k) g(a_k)$ est un produit scalaire de $\mathbb{R}_n[X]$.

2. Dans le cas où n=2 et $a_0=-1$, $a_1=0$ et $a_2=1$ trouver une base orthonormée de E.

 $\boxed{7}$ Dans un espace vectoriel euclidien E de dimension 3 montrer que si a et b sont deux vecteurs distincts de même norme il existe une unique réflexion s telle que s(a) = b.

Application numérique : E étant muni d'une base orthonormée trouver les formules analytiques de la réflexion échangeant les vecteurs a(1,-1,2) et b(2,1,1).

8 1. Dans E de dimension 3 muni d'une base orthonormée directe B quelle est la nature de l'application f définie par :

$$f(\overrightarrow{x}) = \langle \overrightarrow{u}, \overrightarrow{x} \rangle \overrightarrow{u} + \overrightarrow{u} \wedge \overrightarrow{x},$$

 \overrightarrow{u} étant un vecteur normé donné.

2. Même question pour les endomorphismes dont les matrices sont $\frac{1}{3}\begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$,

$$\frac{1}{3} \begin{pmatrix} -2 & -1 & 2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{et} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{dans la base } B.$$

 $\boxed{9}$ Soit f une fonction continue sur l'intervalle [0,1] ne s'annulant pas sur cet intervalle. Montrer que :

$$\int_{0}^{1} f(t) dt \times \int_{0}^{1} \frac{1}{f(t)} dt \ge 1.$$

(Se placer dans l'espace des fonctions continues sur [0,1] muni du produit scalaire $\langle f,g\rangle=\int_0^1 f(t)\,g(t)\,dt$ et appliquer l'inégalité de Cauchy-Schwarz).

- 10 1. Montrer que si u et v sont deux vecteurs unitaires, les vecteurs u + v et u v sont orthogonaux.
 - ${f 2.}$ Soit f un endomorphisme non nul de E qui conserve l'orthogonalité, c'est-à-dire :

$$\forall (x,y) \in E \times E, (\langle x,y \rangle = 0 \Longrightarrow \langle f(x), f(y) \rangle = 0).$$

Montrer qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que :

$$\forall x \in E, \|f(x)\| = \alpha \|x\|.$$

 $(f \text{ est appelée } similitude \ vectorielle).$

$\overline{11}$ Procédé d'orthonormalisation de Gram-Schmidt

Soit (e_1, \ldots, e_n) une base de E. Montrer qu'il existe une base (f_1, \ldots, f_p) orthogonale de E vérifiant la condition :

$$\forall k \in \{1,\ldots,n\}, Vect(e_1,\ldots,e_k) = Vect(f_1,\ldots,f_k).$$

(indication : supposant les vecteurs f_1, \dots, f_{k-1} construits pour k > 1 chercher f_k sous la forme :

$$f_k = e_k + \beta_1 f_1 + \ldots + \beta_{k-1} f_{k-1}$$
).

Comment en déduire une base orthonormée de E vérifiant la même condition (*)? (on dit qu'on a orthonormalisé la base (e_1, \ldots, e_n)).

Exemple: soit $E = \mathbb{R}_3[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^{1} P(t) Q(t) dt$.

Orthonormaliser la base canonique $(1, X, X^2, X^3)$ par le procédé de Gram-Schmidt.