Exercices Equations Différentielles
Deux exercices indépendants sur les équations différentielles
A. Soit I’équation différentielle :

vy + (v —1)y = 2>

1. Résoudre I'équation (F) sur R*.
2. Existe t-il des solutions sur R 7

B. A étant une fonction donnée, dérivable sur R, on cherche les fonctions f dérivables sur
R vérifiant :

Ve eR, f'(z) + f(—x) = A(x). (1)
Soit f une solution de 'équation (1).

1. Montrer que f est deux fois dérivable sur R et que :
Ve e R, f7 (x)+ f(z) = A(—x)+ A" (x).

2. En procédant par analyse-synthése, trouver toutes les fonctions vérifiant (1) dans le cas
ou A est définie par A (x) = 2? + 1.

Résoudre dans R* I’équation différentielle :
ry +y =arctanz (F).
2. Résoudre cette équation dans R.
On considere I'équation différentielle (£) définie par
2y —y=(2*-1)e". (E)

1. Résoudre I'équation (E) sur RY et dans R*.
2. Montrer que (E) a une infinité de solutions dans R. Préciser ces solutions.
Soit I’équation différentielle :

vy + (r— 1)y = 2>,

1. Résoudre I'équation (E) sur R*.

2. Existe t-il des solutions sur R 7

@ On veut trouver toutes les fonctions dérivables de R dans R telles que :

fia)=f(r—a). (2)
Soit f vérifiant la condition (1).
1. Montrer que f est deux fois dérivable dans R et que f vérifie : f7 4+ f = 0.
2. En procédant par analyse-syntheése, trouver toutes les fonction dérivables sur R vérifiant
(1).
Soit I’équation diffférentielle

1
2y + ay + <x2 — Z) y=0 (F).

Partie A



1. Résoudre dans R I’équation différentielle
27 +2=0.
2. Déterminer les réels A et B tels que la fonction

Acosx + Bsinx

NG

Xr —

admette une limite finie en 0F.

Partie B

3. En effectuant le changement de fonction défini par z (z) = \/xy (z) résoudre 1’équation
différentielle (E) dans R¥.

4. Résoudre Iéquation (E) dans R, .

5. Démontrer que I'ensemble des solutions de (E) ayant une limite finie en 0" est un espace
vectoriel de dimension 1 dont on donnera une base.

Correction :

A. 1. Pour z € RY I'équation équivaut a y' + (%1) y = 22

z—1

L’équation homogeéne a pour soltution y = Ce~/ = % = Ce #tMl2l = Cze=. Idem sur R

(avec une autre constante C”).

On cherche une solution particuliére de la forme y; () = C'(x) ze™*. En reportant dans
I’équation avec second membre on obtient : C’ (z) ze™® = x?, soit €' (z) = ze” d'ou C (z) =
[ ze"dz. On integre par parties en posant u = z (donc v’ = 1), v/ = e¢*,v = ¢* d’on [ ze®dr =
re® — e”. Une solution particuliere de 'équation est donc : y; (z) = 22 —x =z (v — 1).

Les solutions de '’équation dans R* sont donc |y (z) = Cze ™ + z (v —1)|.

Sur R* on a de méme y () = C'ze™ +ax (x — 1).
2. Si l’équation a une solution sur R la fonction yz définie par yg (z) = Cxe ™ + z (z — 1)

pour x > 0 et yg (x) = C'xze 4+ x (x — 1) pour x < 0 se prolonge en une fonction dérivable en
0.

Comme lim+yE (x) = lim+yE () = 0, la fonction yg se prolonge par continuité en 0 en
z—0 z—0
posant yg (0) = 0.
Voyons si ce prolongement est dérivable en 0. On a 7, = M =Ce ™+ (z—1) si
x > 0 donc 1im+7$ = (C —1et de méme lim 7, = C' —1. Dons yg est dérivable en 0 ssi C' = '
z—0 z—0~

et alors y (0) = C — 1.

Enfin le prolongement de yp vérifie I’équation pour x = 0.

Conclusion : les solutions de 'équation dans R sont définies par |y (z) = Czre ™ +z (v — 1) |.

B.1.Ona:VzeR, f'(z)=—f(—x)+ A(z) (*). Comme f et A sont dérivables sur R il
en est de méme de z —— —f (—z) + A (z), donc f est deux fois dérivable sur R.

Deplus: Vz € R, [ (z) = f' (—2)+ A’ (z). Or, dapreés (¥)ona: f' (—z) = —f (z)+A(—x),
donc f7" (z) = —f(z)+ A(—x) + A (z) dou: |[Vx e R, f7 () + f(x) = A(—z)+ A" (2) |

2. Analyse : d’aprés 1/, siy est solution de (1), alors y est solution de I’équation différentielle
du second ordre : 37 +y = 2% + 1 + 2z.

L’équation caractéristique est 72 + 1 = 0 dont les solutions sont r = +i. Les solutions de
I'équation homgene sont donc y () = Acosz + Bsinz (ou A et B sont des constantes réelles).

On cherche une solution particuliere de I’équation avec second membre sous la forme d’un
polynome de degré 2 : y; (x) = ax® + bz + c¢. En reportant dans I’équation on obtient :
ar? +br+c+2a=2*+1dou: a=1,b=22a+c=1,soit y (z) = 2*> + 2z — 1.



Les solutions de I’équation y” +y = x2 + 1+ 2z sont donc : y () = Acosx + Bsinz + 2 +
2x — 1.

Synthése : posons y (z) = Acosz+ Bsinx+z%+2x—1. Donc ¢/ () = —Asinz+ Bcosx +
2r + 2.

On adonc: Vr € R,y (z) +y(—x) = (A+ B)cosz — (A+ B)sinx + 22 + 1.
y est donc solution de (1) ssi B = —A.

En définitive, les fonctions vérifiant (1) sont les fonctions : ’ r+— Acosx — Asinz + 2% + 2z

1. Résolvons I'équation dans R’ ou R*.

L’équation (£) équivaut alors a 3’ + %y — arctang

Les solutions de I'équation homogene sont : y (z) = Ce™"*l, soit y (z) = € out C est une
constante réelle.
On cherche une solution particuliére de (F) de la forme y (z) = @ ou z —— C'(z) est une

fonction dérivable (méthode de "variation de la constante").

Onavy (z)= w et en reportant dans (E) on obtient : @ = adant goit O (1) =
arctan x donc C' (x) = [ arctanz.dz. On intégre par parties en posant ;

_ ool 1
{u—arctanx Ul =

v =1 o=z

x _— J—
T2 T arctanx

(u et v étant de classe C* sur R) et on obtient : [ arctanz.dz = x arctan z—
$In (14 22).
ln(1+272)

Une solution particuliére de (£) est donc : y (v) = arctanz — ——-

Les solutions de (F) dans R* sont donc :

2
- arctanm—@+%six>0
Ye (:E) o ln(l—i—:pz) c A :
arctanr — —5—+ =2 stz <0

2. Si y est solution de (F) sur R alors elle est solution de (F) sur R* donc elle coincide avec
la fonction yg trouvée précedemment donc celle-ci se prolonge par continuité et dérivabilité en
0.

In(1+22 .. In( 1422 .. . .
Or H(Q—J:) ~ %= = r au voisinage de 0 donc a( ;: ) 2 0 et % n’a une limite finie en 0 ssi
€r—>
C' =0. On adonc C; = Cy = 0 et alors yg se prolonge par continuité en 0 en posant yg (0) = 0.

n l’2
1(1;; )Six;&Oety(O)zo.

Vérifions que cette fonction en bien solution de (E) sur R. Montrons d’abord qu’elle est

On a donc y () = arctanx —

_ rctan z—In 2
dérivable en 0. Son taux d’accroissement en 0 est 7, = y(x)xy(o) _ Zrarct ;ﬂ (e ) On a
2 2 2
2z arctan z = 22?4 0 (2?) et In (1 + 2?) = 2% + o (2?) donc 7, = % =3+o(1) 0 3

1

y est donc dérivable en 0 et 3’ (0) = 3.

Enfin il est clair que cette fonction vérifie (E) ent 0.
ln(1+:1:2)
2x

Conclusion : la fonction y définie par y () = arctan z — sizx#0ety(0)=0estla

seule solution de (E) sur R.

1. L’équation (E) équivaut a y' — % = (1 — x—g) e’ (E') pour x # 0.

Pour z > 0 les solutions de I"équation homogéne y' — % = 0 sont y, () = Ce V=,



On cherche une solution particuliére de I’équation (E£') sous la forme y; (z) = C (z) e~ V/7.

Onavy, () = C' (x).e"Y*4+C (z). (6*1/9”)/ et en reportant dans I'équation (E') : C' (z) .e” /7 +
C ). (%) = 5.0 (@) eV = (1= ) e, soit C' (x) e 4 + O (a) [(e7/7) = eVe] =
(1 - —) e ou C'(z).e™/* = (1—&)e”, soit C'(z) = (1— %) ¢™ . On prend C(z) =
e*z. Une solution particuliere de (E) est donc y; (z) = €”.

Les solutions de (E) pour x > 0 sont donc :
y(z) = Ce V7 4 e7,
Pour 7 < 0 on a de méme y () = Ce™/* + ¢ donc les solutions de (£) dans R* sont :

(2) = Ce V7 4 e siz>0
YW= Cle Ve fersiz <0

ou C et C’ sont deux constantes arbitraires.
2. Si z est une solution de (F) sur R c’est un prolongement de la fonction précédente par
continuité (et méme par dérivabilité) en 0.

Or Ce Y — 0 en 07 donc y (z) — 1.

z—0t

D’autre part C'e”"/* — 400 ou —oo suivant que ¢’ > 0 ou C7 < 0. Donc y a donc une

rz—0~

limite finie en 0~ ssi ¢’ = 0.
y se prolonge donc par continuité en 0 ssi C’ = 0 en posant y (0) = 1.

On a donc :

Ce Vo fevsiaz>0
s = { CTLET I o)

Ce /241
T

Veérifions que z est dérivable en 0. Le taux de variation en 0 est 7 (x) = siz >0

et 7(z) = <2 siz <.

z_1 —1/z T _ —1/z T _
On a ¢ — 1. D’autre part, si # > 0 7 (r) = Y- rer=l — Ce + <=1 On pose
xX z—0 xr X xX
X:l—>+ooete—:§ — 0, donc 7 (z) — 1.
T x0t x €7 X—+4o00 z—0

La fonction z est donc dérivable en 0 et 2’ (0) = 1.

Enfin la fonction z vérifie 'équation (E) pour z = 0 (car z(0) = 1).

Conclusion : les solutions de (E) dans R sont les fonctions z définies par (1).

1. Soit P un polynéme solution de (E) et az™ (a # 0) son terme de plus haut degré.
Le terme de plus haut degré de (22 + 1) P” — 2P est [n(n — 1) — 2] ax™ si n > 2 et —2az" si
0<n<1 Onadoncn(n—1)—2 =0, soit n = 2. Réciproquement P(z) = ax?® + bx + ¢
est solution de (F) ssi —2bx + 2a — 2¢ = 0, soit b = 0 et a = c. Par exemple yo = 22 + 1 est
solution de (E).

2. Si y est deux fois dérivable sur R on écrit y = (2 + 1) 2 avec z =
fois dérivable sur R.

—7 qui est bien deux

On pose y = yoz = (22 + 1)z dou y’ = 22 +4z2' + (22 + 1) 2” et y est solution de (E) ssi
(2?2 4+ 1) 2z + 4z’ + (22 +1)2”] — 2 (x> + 1) 2 = 0 soit [4x2’ + (2> + 1) 27 =0 (E") |.

3. On intégre par parties en posant u=uxetv = ﬁ u=10v= —m (u et v de
classe C!' sur R). On obtient f 2al:z: —sty T 3 L = s T3 Larctan z.
1422 —22)dz 24
On écrit f 1+ 2) = f( HIQ) = [ 2 Tra?) —J ix;r)z» a7 = arctan r + satay —

1 _— =
5 arctanr = arctan:L' + 20%2)



4. En posant Z = 2/ (E’) équivaut a 4oZ + (2?2 +1)Z' = 0, soit Z' + fng = 0. Les
—2mn(a®+1) _ - . On obtient

(2+1)2
) + €’ Les solutions de (E) sont

solutions de cette derniére équation différentielle sont Z = Ce

donc 7' = = QH)Q soit 2z = C’f 1+ 2)2 + (' = (arctanm+ T

donc y = yo.z soit |y(z) = K [(z* 4+ 1) arctanz + x| + C' (1 + 2?) | (en posant K = £).

1. Pour z € R, I’équation équivaut & y' + ( ) y = a?

L’équation homogene a pour soltution y = Ce™/ Bhde — Ce_”l“'“"' = Cze ™. Idem sur R*

(avec une autre constante C").

On cherche une solution particuliére de la forme y; (z) = C'(x) ze™. En reportant dans
I’équation avec second membre on obtient : C” (z) ze™ = x?, soit C' (z) = ze® d'ou C (v) =
J xe*dz. On intégre par parties en posant u = z (donc v’ = 1), v/ = ", v = e* d’ou [ ze"dx =
ze® — e”. Une solution particuliére de 'équation est donc : y; (z) = 22 —z =z (x — 1).

xT

Les solutions de I'équation dans R sont donc |y (z) = Cze™ + (v —1)|.

Sur R* on a de méme |y () = C'ze ™ +x(x—1)|

2. Comme lim+yE (x) = lim+yE (x) = 0, la fonction yg se prolonge par continuité en 0 en
z—0 z—0

posant yg (0) = 0.

Voyons si ce prolongement est dérivable en 0. On a 7, = M =Ce ™+ (r—1)si
x > 0 donc hm+rx = (C —1et de méme lim 7, = C'—1. Dons yg est dérivable en 0 ssi C' = C’
z—0 z—0~

et alors y (0) = C' — 1.
Enfin le prolongement de yg vérifie I’équation pour x = 0.

Conclusion : les solutions de 'équation dans R sont définies par |y (v) = Cxe ™ +z (v — 1) |.

(6] 1. Comme f est dérivable sur R il en est de méme pour la fonction  +— f (1 — )
(composée de fonctions dérivables). Comme f’(z) = f (7 — x) pour tout x, la fonction f’ est
dérivable sur R, donc f est deux fois dérivable sur R.

En dérivant f'(z) = f (r — x) on obtient : f” (x) = —f'(r —x). Or f' (7 —x) = f (z) (en
remplacant x par m — z dans (1)), donc f” (x) = —f' (z), soit f” (z) + f (x) = 0 pour tout réel
.

2. Analyse : si f vérifie (1) donc elle est solution de 'équation différentielle y” + y = 0,
d’équation caractéristique r* + 1 = 0, soit f () = Acos(z) + Bsin(z) (A et B constantes
réelles).

Synthése : x —— vérifie (1) ssi: Vo €, —Asin (z)+ B cos () = Acos (7 — )+ Bsin (7 — z),
soit —Asin () + Bcos (z) = —Acos (x) + Bsin (x), ce qui équivaut & B = —A.

Conclusion : les solutions de (1) sont les fonctions  — A (cos (x) — sin (z)).

Soit I’équation diffférentielle z (z) = /xy (x)

1
2y + xy + <x2 — Z) y=0.

4. z est deux fois dérivable sur R} comme produit de fonctions deux fois dérivables et on a

y(z) =272z (z) donc y/ (z) = —La73/22 (2)+a V2% (z) ety () = 27227 (2)—2 7322 (2)+
325/2, ().
b En reportant dans (E) on a : y est solution de (E) ssi 2%/22” (z) — 2'/22' (z) + 227122 (z) —
o722 (2) + 222 (@) 4 (22 — 1) 27122 (2) = 0, soit 2%/%2” (z) + 23/%2 (z) = 0 ce qui équivaut
az +2z2=0.

D’apres 1/ les solutions de cette équation différentielle sont z (x) = Acosz + Bsinx.

Les solutions de (E) sont donc : y (r) = A«setBsnz ayec A et B constantes réelles.



5. D’apres 2/ les solutions de (F) ayant une limite finie en 0" sont : y (z) = %

L’ensemble {B % /B € ]R} est la droite vectorielle de base z — %



