
Exercices Espaces Vectoriele Euclidiens; Matrices Orthogonales
1 Soit E un espace euclidien de dimension 3 et f l�endomorphisme de E dont la matrice

dans une base orthonormée directe B =
��!
i ;
�!
j ;
�!
k
�
est

A =

0@�2y y x
y 7x y
x y �2y

1A :
1. Calculer les réels x et y pour que f soit une isométrie de E.
2. Donner la nature et les éléments caractéristiques de f dans les deux cas suivants :

a. x = 1
9
et y = 4

9
;

b. x = �1
9
et y = �4

9
.

2 On considère la matrice A =

0@4 0 2
0 4 �2
2 �2 2

1A et on note f l�endomorphisme canonique-

ment associée à A. Soit B0 = (e1; e2; e3) la base canonique de R3.
On pose : u1 = �e1 + e2 + 2e3; u2 = e1 + e2; u3 = e1 � e2 + e3.
1. Montrer que B = (u1; u2; u3) est une base de R3.
2. Déterminer l�image des vecteurs u1; u2; u3 par f et les exprimer en fonction de u1; u2 et

u3.

Pour �; �; 
 réels non nuls, il résulte du 1/ que B0 = (�u1; �u2; 
u3) est encore une base de
R3.
3. Déduire de la question 2/, avec un minimum de calculs, la matrice A0 de f dans la base

B0.

On pose :

P =

0@�� � 

� � �

2� 0 


1A .
4. Donner une condition nécessaire et su¢ sante pour que la matrice P soit orthogonale.
Dans la suite �; �; 
 ont des valeurs telles que P soit orthogonale.

5. Montrer sans calculs que A = PA0tP .

Pour x; y; z réels on pose X =

0@xy
z

1A (matrice colonne de type (3; 1)) et tX = (x; y; z)

(matrice ligne de type (1; 3)).

Soit Q une matrice réelle symétrique de type (3; 3). Pour X =

0@xy
z

1A et Y =

0@x0y0
z0

1A dans R3

on pose g (X; Y ) =t XQY .

6. Quel est le type de la matrice tXQY ?
Montrer que g est une forme symétrique et bilinéaire de R3 (on assimilera une matrice de

type (1; 1) à un réel).

On pose dans la suite Q = A (donc g (X; Y ) =t XAY ) et ' (X) = g (X;X) =t XAX (où A
est la matrice dé�nie précedemment).

7. Calculer ' (X) en fonction de x; y; z.
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On pose tPX =

0@x0y0
z0

1A = X 0.

8. Montrer que ' (X) = 4y02 + 6z02.
En déduire que g est une forme positive de R3.
Est-ce un produit scalaire de R3 ?

3 Pour a et b réels, on note M (a; b) la matrice dé�nie par :

M (a; b) =

0@3a 2b 2b
2b 3a 2b
2b 2b 3a

1A ,
et on note fa;b l�endomorphisme ayant pour matrice M (a; b) dans une base orthonormée

d�un espace euclidien E.

1. Calculer le déterminant de M (a; b) (on donnera le résultat sous forme factorisé).

2. Calculer les valeurs de a et b telles que la fa;b soit une isométrie de E.
3. Dans les cas où M (a; b) est une matrice orthogonale avec b 6= 0 préciser la nature de

l�endomorphisme fa;b.

4 Partie 1.

1. Montrer par récurrence que pour tout entier naturel n il existe un polynôme Un à
coe¢ cients réels tel que :

8� 2 R; sin [(n+ 1) �] = sin (�)� Un (cos �) . (1)

(On pourra utiliser la relation : sin (a+ b) + sin (a� b) = 2 sin (a) cos (b) valable pour tous
réels a et b).

Montrer que :
8n � 1; Un+1 (X) = 2XUn (X)� Un�1 (X) : (2)

Calculer U0; U1; U2 et U3.

2. Montrer que pour tout entier naturel n il existe un unique polynôme Un véri�ant (1).
3. En utilisant la relation (2) montrer que Un est de degré n.
Calculer le coe¢ cient du terme de plus haut degré de Un.

4. Montrer que Un possède n racines réelles x1; x2; : : : ; xn distinctes deux à deux dans
l�intervalle [�1; 1].
5. Pour n � 1 donner la décomposition de Un en produit de polynômes de degré 1 dans

R [X] en fonction de x1; x2; : : : ; xn.

Partie 2.

On pose, pour tous polynômes P et Q de R [X]:

hP;Qi =
Z 1

�1
P (t)Q (t)

p
1� t2dt.

6. Montrer que l�application (P;Q) 7�! hP;Qi de R [X]� R [X] est un produit scalaire de
R [X].
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(On montrera en particulier avec soin que cette application est dé�nie).
7. Pour p et q entiers naturels distincts exprimer hUp; Uqi sous forme d�une intégrale de la

variable t.
En posant t = cos (x) avec x 2 [0; �] dans cette intégrale, montrer que hUp; Uqi = 0
(on pourra utiliser 2/ et la relation 2 sin a sin b = cos (a� b)� cos (a+ b), valable pour tous

réels a et b).
Que peut-on dire du système (Uk)k2N ?
8. En s�inspirant de 6/ calculer kUnk pour n 2 N.
En déduire un système orthonormé de R [X].

Correction :
1 1. f est une isométrie ssi la matrice A est orthogonale soit ssi ses colonnes formes un

système orthonormé de R3 (muni de son produit scalaire canonique) ce qui donne le système8<:
x2 + 5y2 = 1
49x2 + 2y2 = 1
�2y2 + 8xy = 0

soit

8<:
x2 + 5y2 = 1 (1)
49x2 + 2y2 = 1 (2)
y (4x� y) = 0 (3)

.

L�équation (3) donne y = 0 ou y = 4x. La solution y = 0 ne convient pas d�après (1) et (2).
On a donc y = 4x et en reportant dans (1) et (2) on obtient 81x2 = 1 soit x = �1

9
.

Les couples (x; y) solutions sont donc
��

1
9
; 4
9

�
;
�
�1
9
;�4

9

�	
.

2. a. Si x = 1
9
et y = 4

9
on a A = 1

9

0@�8 4 1
4 7 4
1 4 �8

1A. On véri�e que detA = 1 donc f est
une rotation. Son angle � véri�e 2 cos �+1 = TrA = �1 donc cos � = �1 soit � = � donc f est
un demi-tour. Son axe est l�ensemble des vecteurs invariants, donc leur coordonnées véri�ent
les systèmes8<:

�8x+ 4y + z = 9x
4x+ 7y + 4z = 9y
x+ 4y � 8z = 9z

()

8<:
�17x+ 4y + z = 0
2x� y + 2z = 0
x+ 4y � 17z = 0

()

8<:
�17x+ 4y + z = 0
�9x+ 9z = 0
18x� 18z = 0

(L2  � 4L2+L1, L3  � L3�L1). On obtint x = z = t et y = 4t. Donc l�axe de la rotation
en engendré par le vecteur (1; 4; 1).
b. Si x = �1

9
et y = �4

9
on obtient la matrice A0 = �A. Donc detA0 = (�1)3 detA = �1.

Les coordonnées des vecteurs invariants sont solution du système8<:
8x� 4y � z = 9x
�4x� 7y � 4z = 9y
�x� 4y + 8z = 9z

()

8<:
�x� 4y � z = 0
�4x� 16y � 4z = 0
�x� 4y � 8z = 0

donc l�ensemble des vecteurs invariant est le plan d�équation x+ 4y + z = 0. f est donc la re�exion de plan P .
2 1. Comme B possède trois éléments il su¢ t de montrer que le système est libre ce qu�on

l�on véri�e facilement.

2. On a A:

0@�11
2

1A =

0@00
0

1A ; A:
0@11
0

1A =

0@44
0

1A et A:

0@ 1
�1
1

1A =

0@ 6
�6
6

1A donc f (u1) =

0; f (u2) = 4u2 et f (u3) = 6u3.
3. On a f (�u1) = � f (u1) = 0; f (�u2) = � f (u2) = 4�u2 et f (
u3) = 
f (u3) = 6
u3

donc la matrice A0 de f dans la base B0 est A0 =

0@0 0 0
0 4 0
0 0 6

1A.
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4. La matrice P est orthogonale ssi ses colonnes forment un sytème orthonormé de R3 muni
de son produit scalaire canonique ce qui donne le système : 6�2 = 1; 2�2 = 1; 3
2 = 1 soit
� = � 1p

6
; � = �1; 
 = � 1p

3
.

5. On remarque que P est la matrice de passage de la base canonique B0 de R3 à la base
B0, donc on a : A0 = P�1AP , soit A = PA0P�1. Comme la matrice P est orthogonale on a
P�1 =t P d�où A = PA0tP .

6. tX est type (1; 3), Q de type (3; 3) et Y de type (3; 1), donc tXQY est de type (1; 1),
que l�on assimile à un réel.

On a donc : tXQY =t (tXQY ). Or t (tXQY ) =t Y tQt (tX) =t Y QX (car Q est symétrique
et t (tX) = X), donc tXQY =t Y QX, soit g (X;Y ) = g (Y;X), donc g est symétrique.

De plus, pour � 2 R, on a : g (X + �X 0; Y ) =t (X + �X 0)QY =
�
tX + �tX 0

�
QY , soit

g (X + �X 0; Y ) =t XQY + �tX 0QY = g (X; Y ) + �g (X 0; Y ). g est donc linéaire par rapport à
la première composante, et comme elle est symétrique, g est bilinéaire.

7. Un calcul facile donne : ' (X) = 4x2 + 4xz + 4y2 � 4yz + 2z2.
8. Comme tPX = X 0 on a X = (tP )

�1
X 0, soit X = PX 0 (car tP = P�1).

On a alors ' (X) =t XAX =t (PX 0)APX 0 =t X 0tPAPX 0 =t X 0A0X 0 (car tPAP = A0

d�après 5/).

Or tX 0A0X 0 = (x0; y0; z0)

0@0 0 0
0 4 0
0 0 6

1A0@x0y0
z0

1A = 4y02 + 6z02.

Il en résulte que : 8X 2 R3; ' (X) = g (X;X) � 0, donc g est une forme positive.
Mais g n�est par un produit scalaire de R3 car elle n�est pas dé�nie, car par exemple si

tPX = X 0 =

0@10
0

1A, on a g (X;X) = 0 et X 6= 0.
3 1. On a detM (a; b) =

������
3a 2b 2b
2b 3a 2b
2b 2b 3a

������ =
L1 L2+L3

������
3a+ 4b 3a+ 4b 3a+ 4b
2b 3a 2b
2b 2b 3a

������, donc detM (a; b) =

(3a+ 4b)

������
1 1 1
2b 3a 2b
2b 2b 3a

������ =
C2 C2�C1
C3 C3�C1

(3a+ 4b)

������
1 0 0
2b 3a� 2b 0
2b 0 3a� 2b

������, d�où detM (a; b) = (3a+ 4b) (3a� 2b)2 .

2. fa;b est un isométrie ssi la matrice M (a; b) est une matrice orthogonale, ssi ses colonnes
forment un système orthonormé de R3 (muni de son produit scalaire canonique), ce qui donne
le système : �

9a2 + 8b2 = 1 (1)
12ab+ 4b2 = 0 (2)

.

L�équation (2) équivaut à b (3a+ b) = 0 soit b = 0 ou 3a+ b = 0.

Si b = 0, l�équation (1) donne a = �1
3
.

Si 3a+ b = 0 on a b = �3a et l�équation (1) donne 9a2 + 72a2 = 1, soit a = �1
9
.

Les couples pour lesquels fa;b est une isométrie sont donc
�
�1
3
; 0
�
,
�
1
9
;�1

3

�
et
�
�1
9
; 1
3

�
.

3. Si a = 1=9 et b = �1=3 on a detM (1=9;�1=3) = �1 d�après 1/ donc fa;b est une
ré�exion plane ou une antirotation. Cherchons l�ensemble des vecteurs invariants : X (x; y; z)

est invariant ssi fa;b (X) = X ce qui donne le système :

8<:
x
3
� 2y

3
� 2z

3
= x

�2x
3
+ y

3
� 2z

3
= y

�2x
3
� 2y

3
+ z

3
= z

qui équivaut

x+ y + z = 0. L�ensemble des vecteurs invariants est le plan P d�équation x+ y + z = 0 donc
f1=9;�1=3 est la ré�exion de plans P .
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Si a = �1=9 et b = 1=3 on a M (�1=9; 1=3) = �M (1=9;�1=3), donc detM (�1=9; 1=3) =
(�1)3 detM (1=9;�1=3) = +1, donc f�1=9;1=3 est une rotation.
Son axe est l�ensemble des vecteurs invariants : comme précédemment on obtient le système8<:
�x
3
+ 2y

3
+ 2z

3
= x

2x
3
� y

3
+ 2z

3
= y

2x
3
+ 2y

3
� z

3
= z

, équivalent à

8<:
�2x+ y + z = 0
x� 2y + z = 0
x+ y � 2z = 0

, équivalent à
�
�2x+ y + z = 0
x� y = 0

.

En prenant t = x pour paramètre on obtient x = y = z = t, donc l�axe est la droite
engendrée par �!n (1; 1; 1).
L�angle � véri�e 2 cos � + 1 = Tr (M (�1=9; 1=3)) = �1 donc cos � = �1, soit � � � (2�).
Donc f�1=9;1=3 est le demi-tour d�axe D.

4 Partie 1.
1. Soit la propriété P (n) : "8� 2 R; sin (�)� Un (cos �) = sin [(n+ 1) �] ".
P (0) et P (1) sont vraies avec U0 = 1 et U1 = 2X (car sin (2�) = 2 sin � cos �).

Supposons P (n) vraie pour tout entier k inférieur ou égal à n (entier �xé � 1).
D�après la formule rappelée dans l�énoncé on a, pour tout réel � :

sin [(n+ 2) �] + sin (n�) = 2 sin [(n+ 1) �] cos (�) ;

donc, d�après l�hypothèse de récurrence : sin [(n+ 2) �]+sin (�)�Un�1 (cos �) = 2Un (cos �) sin (�) cos (�).
On a donc : sin [(n+ 2) �] = sin (�) [2Un (cos �) cos (�)� Un�1 (cos �)], soit sin [(n+ 2) �] =

sin (�)Un+1 (cos �) avec Un+1 (X) = 2XUn (X) � Un�1 (X), qui est bien un polynôme à coe¢ -
cients réels. Donc P (n+ 1) est vraie.

Conclusion : d�après le principe de récurrence (forte) on a P (n) vraie pour tout entier
naturel n.

De plus le raisonnement précédent montre que 8n � 1; Un+1 (X) = 2XUn (X)� Un�1 (X) .
2. Supposons qu�il existe un polynôme Vn véri�ant (1).
Alors, pour tout réel � 6� 0 (�) on a Un (cos �) = Vn (cos �).
Les polynômes Un et Vn coïncident en un in�nité de points ils sont donc égaux.

Conclusion : il existe un unique polynôme Un véri�ant (1).

3. Soit la propriété P (n) : "Un est de degré n et son terme de plus haut degré est 2n".
P (0) et P (1) sont vraies.
Supposons P (n) vraie pour tout entier k inférieur ou égal à n (entier �xé � 1).
On a Un+1 = 2XUn�Un�1 (X) et d� (Un) = n (donc d� (2XUn) = n+1) et d� (Un�1) = n�1

donc d� (Un+1) = n+ 1.
Le coe¢ cient du terme de plus haut degré de Un+1 s�obtient alore en multipliant par 2 celui

de Un donc il est égal à 2n+1.
Conclusion : d�après le principe de récurrence (forte) on a P (n) vraie pour tout entier

naturel n.

4. On a sin [(n+ 1) �] = 0() (n+ 1) � � 0 (�)() � = �k =
k�
n+1

(k 2 Z).
On a donc : 8k 2 Z; sin (�k) � Un (cos (�k)) = 0 d�après (1). Pour k = 1; 2; : : : ; n on a

�k 2 ]0; �[ donc sin (�k) 6= 0, d�où Un (cos (�k)) = 0.
Les réel xk = cos (�k) pour k 2 f1; 2; : : : ; ng appartiennent à l�intervalle [�1; 1] et sont

distincts deux à deux (car la restriction de cos à [0; �] est injective). Comme Un est de degré
n, Un a au plus n racines; les réels xk = cos

�
k�
n+1

�
sont donc toutes les racines de Un.

Conclusion : les réel xk = cos (�k) = cos
�
k�
n+1

�
(k 2 f1; 2; : : : ; ng) sont les racines de Un

(car d�Un = n).
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5. D�après 4/ on a : Un (X) = � (X � x1) : : : (X � xn).
Le terme de plus haut degré de Un est 2nXn (3/) et celui de � (X � x1) : : : (X � xn) est

�Xn, donc � = 2n.
Conclusion : 8n � 1; Un (X) = 2n (X � x1) : : : (X � xn) .
Partie 2.

6. On voit facilement que la forme (P;Q) 7�! hP;Qi est symétrique, bilinéaire, positive.

Véri�ons qu�elle dé�nie : si hP; P i = 0 alors
Z 1

�1
P (t)2

p
1� t2dt = 0. Comme l�application

t 7�! P (t)2
p
1� t2 est continue que [�1; 1] et positive alors on a 8t 2 [�1; 1] ; P (t)2

p
1� t2 =

0; soit P (t) = 0 pour tout réel de ]�1; 1[. Le polynôme P a une in�nité de racine il est donc
nul et donc la forme est bien dé�nie.
Conclusion : (P;Q) 7�! hP;Qi est un produit scalaire de R [X].

7. Pour (p; q) 2 N2 on a hUp; Uqi =
Z 1

�1
Up (t)Uq (t)

p
1� t2dt.

On pose dans cette intégrale t = cos x avec x 2 [0; �] donc dt = � sin xdx,
p
1� t2 = sinx

et on obtient : hUp; Uqi =
Z �

0

Up (cosx)Uq (cosx) sin
2 xdx =

Z �

0

sin [(p+ 1) x] : sin [(q + 1) x] dx,

d�après la question 2/. Comme 2 sin [(p+ 1) x] : sin [(q + 1) x] = cos [(p� q)x]�cos [(p+ q + 2) x],
on obtient : hUp; Uqi = 1

2

Z �

0

cos [(p� q)x] dx�
Z �

0

cos [(p+ q + 2) x] dx,

soit hUp; Uqi = 1
2

h
sin[(p�q)x]

p�q � sin[(p+q+2)x]
p+q+2

i�
0
= 0.

Conclusion : hUp; Uqi = 0 pour p 6= q .
La famille (Uk)k2N est donc orthogonale.

8. Pour n 2 N on a kUnk2 = hUn; Uni =
Z 1

�1
Un (t)

2
p
1� t2dt. Le changement de variable

t = cos x donne comme précédemment : kUnk2 =
Z �

0

sin2 [(n+ 1) x] dx.

On linéarise : sin2 [(n+ 1) x] = 1�cos[2(n+1)x]
2

, d�où kUnk2 =
Z �

0

1�cos[2(n+1)x]
2

xdx =
h
x
2
� sin[2(n+1)x]

2(n+1)

i�
0
=

�
2
, donc kUnk =

p
�
2
.

Le système
�

Uk
kUkk

�
k2N

=
�q

2
�
Uk

�
k2N

est donc un système orthonormé de R [X].

6


