Exercices Espaces Vectoriels-Matrices

Dans R?® muni de sa base canonique (e1, e, €3) on considére 'endomorphisme u de R?
défini par :
uler) =(—1,1,3), u(ey) = (3,-8,—14), u(e3) = (—-2,5,9).
1. Justifier 'existence et 'unicité de u.

2. Montrer que les formules analytiques de u sont :

¥ = —x+3y—2z
y = x—8y+5z
2 = 3x—14y+ 9z

3. Trouver le noyau de u et en donner une base.
Quelle est la dimension de ker v 7 En déduire le rang de u.
Que peut-on dire de u 7

4. Calculer le rang du systéme de vecteurs (u (e1),u (es2),u (e3)).
Retrouver la dimension du noyau de wu.
5. Définir les formules analytiques de u?.

Indiquer les calculs qu’il faudrait effectuer pour montrer que u®> = 0 (endomorphisme nul

de R?) (on ne demande pas d’effectuer ces calculs).

6. Soit Xy un élément de R? tel que u? (Xy) # 0. On pose f; = Xo, fo = u(Xo), f3 =
u? (Xp).

Montrer que le systéme (f1, fo, f3) est une base de R3.

Question préliminaire.

Soit f une application linéaire de E dans E telle que fo f = Idg.

Soit s = Idg — 2f. Montrer que so s = Idg.

Soit (ey, es, €3) la base canonique de R3 et f; = ey — €3, fo = —€1 +2e5 — €3, f3 = —e1 + €9
éléments de R3.

1. Montrer qu'il existe une unique application linéaire u telle que wu (e1) = f1, u(es) = fo
et u (e3) = f3. Ecrire les formules analytiques de u.

2. Trouver le rang de la famille de vecteurs (f1, f2, f3). Quel est le rang de u ?
Que peut-on en déduire pour u ?
3. Déduire de la question précédente la dimension du noyau de u.

4. Retrouver le résultat de la question précédente en calculant keru et en précisant une
base.

5. Trouver ker (u — Id) et en donner une base.
6. Montrer que u o u = u. Que peut-on en conclure pour u 7
Soit s définie comme dans le préliminaire.

7. Quelle est la nature de s ? Préciser ker (s — Id) et ker (s + Id) et en donner une base.

Soit E I'espace vectoriel des fonctions de R dans R de classe C*° sur R.
On considére dans E les fonctions g; : © — €22, gy : . — e®cosz,et g3 : © — e sin .
On veut montrer de plusieurs facons que ces fonctions forment un sytéme libre de F.

Supposons donc qu’il existe des réels a, 5 et v tels que ag; + Bgs +vg3 = 0, ce qui équivaut

Vo € R, e + Be® cosx + ve¥sinz = 0.



1. En prenant des valeurs convenables pour x montrer que a = 3 = v = 0.
Conclusion pour la famille (g1, g2, g3) ?

2. On veut redémontrer le résultat précédent d’un autre facon.
Si a # 0, donner un équivalent au voisinage +o0o de ae?* + e cos z + ye® sin .
En déduire que a@ = 0. Conclure.

3. Calculer un développement limité de aug; + Sg2 + vgs & 'ordre 2 en 0.
En déduire une nouvelle fagon de montrer que (g1, g2, g3) est un sytéme libre.

Soit I'application ® de F dans E qui & f € F associe f7 — 2f’. On admettra sans démon-
stration que ® est linéaire.

4. Exprimer ® (g1), P (g2), P (g3) en fonction de g1, g2, g3-

Si F est le sous-espace vectoriel engendré par gy, g> et gs on considére dans la question
suivante & comme une application de F' dans I’ que ’on notera encore A.

5. Trouver le noyau de A. A est-il un automorphisme de F' ?

PARTIE A

Soit u un endomorphisme de R muni de son produit scalaire canonique.
On note ||.|| la norme euclidienne de R? et B, la base canonique de R3.

On dit que u possede la propriété (P) s’il existe une base orthonormée B de R? et des réels
A 0 0
A1, Ag et A3 tels que la matrice de u dans la base Best [ 0 Xy 0
0 0 Xs

1. Donner quelques exemples d’isométries de E vérifiant la propriété (P).

2. Donner une condition nécessaire et suffisante sur A, Ay et A3 pour qu'un endomorphisme
vérifiant la propriété (P) soit une isométrie.

Dans les trois questions suivantes u est un endomorphisme de E vérifiant la propriété (P).

3. a. Que peut-on dire de la matrice de passage P de la base canonique B, a la base B 7

b. Quel lien y a-t’il entre la matrice M de u dans la base B, et la matrice M’ de u dans
la base B 7

c. Montrer que la matrice M est symétrique.
4. a. Soit un vecteur X de E. On pose k = max (|A1], |2, [A3])-
Montrer que :
Ju (X)[| < K[| X]]
(on pourra décomposer X dans la base B).
b. Si k € [0, 1] quelle est la limite de la suite ||u" (X)|| quand n tend vers plus 'infini ?
PARTIE B : ETUDE D UN EXEMPLE

1 -2 =2
Soit u ’endomorphisme de R? dont la matrice dans sa base canoniqueest M = | =2 1 -2
-2 =2 1
5. Soient les vecteurs e; = (1,1,1),e9 = (—1,—1,2) et e3 = (—1,1,0).
Montrer que B = (\/igel, \/iéeg, \%e;:,) est une base orthonormée de R3.

6. Calculer u (e;) en fonction de e; pour i € {1,2,3}.
En déduire trés simplement la matrice M’ de u dans la base B.

7. Montrer que u vérifie la propriété (P); préciser B et les réels A\, Ay et As.



H
8. Montrer qu’il existe un réel positif a tel que w = awu soit une isométrie de E .

En donner la nature et ses éléments caractéristiques.

Pour a et b réels, on note M (a, b) la matrice définie par :

3a 2b 2b
M (a,b) =120 3a 2b],
2b 2b 3a

et on note f,; 'endomorphisme ayant pour matrice M (a,b) dans une base orthonormée
d’un espace euclidien F£.

1. Calculer le déterminant de M (a,b) (on donnera le résultat sous forme factorise).
2. Calculer les valeurs de a et b telles que la f,; soit une isométrie de E.

3. Dans les cas ou M (a,b) est une matrice orthogonale avec b # 0 préciser la nature de
I’endomorphisme f, .

@ On note Mg (3, 3) 'espace vectoriel des matrices de type (3,3) a coefficients réels et I la
matrice identité.

Soit f 'endomorphisme de R?® dont la matrice dans la base canonique B de R3 est :

2 10 7
A=11 4 3
-2 -8 —6

et on pose u = (2,1, —2).
1. Montrer que ker f =Vect(u).
La matrice A est-elle inversible ?

2. a. Déterminer le vecteur v de R3, dont la deuxiéme coordonnée dans B vaut 1, et tel
que
f(v) = u.
b. Déterminer le vecteur w de R?, dont la deuxiéme coordonnée dans B vaut 1, et qui
vérifie
f(w) =v.
c. Montrer que (u,v,w) est une base de R® que I'on notera B'.
d. Ecrire la matrice de passage P de la base B a la base B’.

3. a. En utilisant les questions précédentes, et sans calculs, écrire la matrice A" de f
relativement a la base B’ = (u, v, w).

b. Donner la relation liant les matrices A, A’, P et P~'. En déduire que, pour tout entier
k supérieur ou égal & 3, on a : A3 = 0.
4. Soit N € Mg (3,3). On note Cy Pensemble des matrices (3,3) qui commutent avec A
c’est a dire :
Cy={M € My (3,3) /MN =NM}.
a. Montrer que Cy est un sous-espace vectoriel de Mg (3, 3).
b. Montrer que Cyr = Vect(I; A’, A”?).

a b c
(pour M € Cy on pourra poser M = (d e f ).
g h i

c. Etablir que : M € Cy <= P 'MP € Cyu.

3



En déduire que Cy =Vect(I, A, A?). Quelle est la dimension de C'y ?

Correction :

1. Comme (ey,eq,e3) est une base de R? il existe une unique application linéaire u
telle que u (e1) = (—1,1,3), u(ez) = (3, =8, —14), u (e3) = (—2,5,9) (théoréme "détermination
d’une application linéaire").

2. Pour (z,y,z) = xe; + yes + zeg on a u(z,y,2) = u(xe; +yes + ze3) = xu(eq)
yu (e2) + zu (e3) (linéarité de u), soit u (z,y,2) = z(—1,1,3) + y (3,—8,—14) + 2 (—2,5,9)
(—z+3y —22)e1 + (v — 8y + 52) ex + (3z — 14y + 92) e3.

/

I+

r = —x+4+3y—2z2
Les formules analytiques de u sont donc ¢ v = x—8y+ 5z
2 = 3x—14y+ 9z
—x+ 3y — 22
3. Ona (z,y,2) € kerussiu(z,y,z) = (0,0,0) ce qui équivaut au systéme x—8y+ 5z
3z — 14y 4+ 9z

On le résout par la méthode de Gauss en effectuant les combinaisons linéaires : Lo «—
—r+3y—2z = 0

Ly + Lo, Ly «+—— 3L1 + Lo et on obtient le systéeme équivalent : -5y + 3z = 0. En
—-5y+3z = 0
prenant z = t pour inconnue auxiliaire on obtient : y = gt, T = —%t.
On a donc ker u = {(—%t, %t,t) /t € R}.
Comme (—%t, %t,t) = t(—%7 %, 1), keru est la droite vectorielle engendrée par le vecteur
(—=£,2,1) (qui en est une base). On a donc |dimkeru = 1|.
Comme keru # {(0,0,0)} 'application u n’est pas injective.
-1 3 =2 -1 0
4. Onarg((u(ey),u(es),u(e =r 1 -8 = r 1 =5
o(aten ue)wlea=ra| 18 5 ) o gre| 1

D’apres le théoréme du rang on a : dimR? = dim ker ¢ + rg (¢) donc dim ker (¢) = 1.

5. Pour (z,9,2) € R® on a u? (v,y,2) = u(z',y,2') (a,y, 2 définies par les formules ana-
Iytiques de u), soit u? (z,y, 2) = (=2’ + 3y — 22/, 2’ — 8y +52',32" — 14y’ + 92') = (27,4, 2”)
avec : ¢’ = — (=2 + 3y —22)+3 (v — 8y + 5z) — 2 (3z — 14y + 92) = —2x +y — z. On trouve,
par un calcul analogue : y” = 6x — 3y + 3z et 2”7 = 10x — 5y + 5z, ce qui donnent les formules
analytiques de 2.

Pour vérifier que > = 0 on montre que —x” +3y” —22” = 27 —8y" +52" = 32" —14y” +92" =

6. Supposons que af; + bfs + cfz = 0, soit aXg + bu (Xy) + cu? (Xo) = 0.

En prenant 'image par u? des deux membres il reste, vu que u® = 0 : au? (X;) = 0. Comme
u? (Xo) # 0 onaa=0. On a donc bu (Xp) + cu? (Xo) = 0. En composant par u on obtient de
méme b = 0, donc cu? (Xo) = 0 d’ott ¢ = 0.

Le systeéme (f1, fo, f3) est donc un sytéme libre que R3.

De plus il posseéde 3 éléments et dim R? = 3 donc (f1, fo, f3) est une base de R3.

[2]Onasos=(Idg —2f)o(Idg — 2f) = Idg — 2f —2f +4f o f = Idp (car fo f = Idg).

1. (e, ez, e3) étant une base de R?, le théoréme "détermination d’une application linéaire"
assure l’existence et 1'unicité de wu.

Si (x,y,2) € R® on a: u(x,y,z) = u(re; + yes + ze3) = zu(ey) + yu (ez) + zu (e3) (car
u linéaire), soit u(x,y,2) = x(ea —e3) + y(—e; +2e3 —e3) + z(—e1+e3) = (—y—2)e; +

|
o



= —y—=z
(x+2y+ 2)es + (—z — y) e3. D’ou les formules analytiques de u : Y= x+2y+=z
2= —xr—y
0 -1 -1 0O -1 -1
2. Onarg(fi,fo,fs)=rg| 1 2 1 | =rg|l 1 1 1] (Cy« Cy—Cy). Les
-1 -1 0 -1 0 0

deux derniéres colonnes étant égales on a : |rg (f1, fa, f3) = 2|

Le rang de ce systéme est aussi égal au rang de u. Comme ce rang n’étant pas égal a 3
I’application u n’est ni injective ni surjective.

3. D’apres le théoréme du rang on a : dimR?® = dimker v + rgu. Comme dimR3 = 3 et
rg(u) =2 ona|dimkeru=1|

4. On a X = (z,y,2) € keru <= u(x,y,z) = (0,0,0) ce qui équivaut au systéme

_y — 2 —
r+2y+2z =0 . En bloquant la deuxieme équation et en l'ajoutant a la premiére le
—rz—y =0
o \ r+2y+z =0 T2tz =0
systéme équivaut a : T+y =0 , ou encore
Ca—y =0 r+y =0

En prenant x = t comme parameétre on obtient (x,y, z) = (¢, —t,t) =t (1,—1,1).
Un base de ker u est donc ((1,—1,1)), et on retrouve bien que dim ker u = 1.

5. On a X = (x,y,2) € ker(u— Id) <= u(z,y,2) = (x,y,2) ce qui équivaut au sys-

—y—z ==
teme { 4+ 2y+ 2z =1y , ou encore a I’équation x + y + z = 0. En prenant par exemple pour
—rx—y =2z

parameétres x = « et y = 3, on obtient : (x,y,2) = (o, 5, —a — ). Comme (o, 3, —a — ) =
a(1,0,—1)+3(0,1,—1), le systéme (u,v) avec u = (1,0, —1) et v = (0,1, —1) est générateur de
ker (u — Id). Comme il est libre (u et v n’étant pas colinéaires) c’est une base de ker (u — Id).

6. On cherche les formules analytiques de uou en calculant : x” = —y/'—2' = — (x + 2y + 2)—
(—z—y)=—-y—z;demémey” =2'+2y +2 =x+2y+zetz’ =—2'—y =—x—y. On
en conclut que et donc que u est une projection.

7. D’apres la question préliminaire on a s o s = Id donc s est une symétrie (par rapport a
ker (s — Id) et parallelement a ker (s + 1d)).

Ona X eker(s—1Id) <= s(X) - X =0<=s5X) =X = X -2uX) = X <
u(X) =0 donc |ker (s — Id) = keru |.
Demémeona X €ker(s+1d) <= s(X)+ X =0<=s(X)= X <= X —2u(X) =
—X <= u(X) = X donc on a |ker (s + Id) = ker (u — Id) |

PARTIE A

1. Les endomorphismes de R3ayant pour matrice une matrice diagonale dont les éléments de
la diagonales valent +1 vérifient la propriété (P) (car ces matrices sont orthogonales et la base
canonique B, est orthonormée pour le produit scalaire canonique) : c’est le cas de 'identité et
de symétries orthogonales par rapport & un plan ou une droite.

A 000
2. L’endomorphisme vérifie (P) ssi la matrice M" = | 0 Ay 0 | dans la base orthonor-
0 0 As

mée B est orthogonale ce qui équivaut a )\f = )\g = )\§ =1, soit pour ¢ = 1,2, 3.

bt



3. a. La matrice de passage P de la base canonique B, a la base B est la matrice dont les
colonnes sont les coordonnées des vecteurs de B dans la base B.. Ces colonnes forment donc
un systéme orthonormé de R? donc la matrice P est orthongonale.

b. On a|M' = P~ 1MP| daprés le cours.
c. D’aprés 3/ b/ on a M = PM'P~* donc MT = (PM'P~1)" = (P~ M"TPT.
Comme la matrice M’ est symétrique on a M'" = M’ et comme la matrice P est orthogonale
on a P! = PT donc M7T = (PT)T]\/[’TP_1 = PM'P~! soit MT = M donc la matrice M est
symétrique.

4. a. Soit B = (eq, e, e3) et (z,y, z) les coordonnées du vecteur X dans la base B.

On a ||u(X)|” = ||u(zey + yes + zes)||* = ||zu (e1) + yu (e2) + zu (e3)|” (car u est linéaire),
soit Hu(X)H2 = ||z ie1 + yAaes + z)\gegH2 (car u(e1) = Aer,u(ea) = Aaeg,u(ez) = Aze3). La
base B étant orthonormée on a donc : [Ju (X)||* = (zA1)* 4+ (yhe)”+ (2A3)* = 222+ A2y2 4+ \222,
Or , A2 M\2 et A2 sont < [max (|\i], |Xa|, [As])]? et 2% 4+ 42 + 22 = || X||* donc | [Ju (X)|| < k|| X]||

b. On a [[u? (X)|| < k||u (X)]| < k?||X|| et par une récurrence facile on a 0 < [|u" (X)|| <
k™ || X || pour tout entier naturel n. Comme k € [0,1[ on a lim k™ = 0 donc lim k" || X || = 0 et

d’apres le théoreme de I’étau on a |lim ||u” (X)|| =0

PARTIE B : ETUDE D UN EXEMPLE

5. Les vecteurs ey, es et e sont orthogonaux deux & deux et de normes respectives v/3, /6
et v/2 donc le systeme (\/Lgel, \/iéeg, \%63) est orthonormé.

Il est donc libre et comme il a trois élément dans R? de dimension 3 c’est donc une base
orthonormée de R3.

6. On a immediatement Me; = —3e;, Mey = 3ey et Mes = 3ez, donc M (%60 =

—%61, M (%62) = \/1662 et M <\/L§€3> = %63.

-3 00
7. La matrice M’ de u dans la base B est donc | 0 3 0 | donc u vérifie la propriété (P)
0 0 3

avec Ay = =3,y =3 et \3 = 3.

8. Les colonnes de M forment un systéme orthogonal et la norme de chaque colonne vaut

3 donc la matrice %M est orthogonale donc w = %u est une isométrie de R3.

-1 00
La matrice de w dans la base B précédente est [ O 1 0 |. On reconnait la matrice de
0 01
la symétrie orthogonale de plan engendré par (eq, es).
3a 2b 2b 3a+4b 3a+4b 3a+ 4b
1. Onadet M (a,b) = [2b 3a 2b| = 2b 3a 2b |, donc det M (a,b) =
2 2b 3a| T 2 2b 3a
1 1 1 1 0 0
(3a +4b) [2b 3a 2b = (3a+4b)|2b 3a—2b 0 |, d’on|det M (a,b) = (3a + 4b) (3a — 2b)* |
2 2b 3a| BIEE 2% 0  3a—2b

2. fap est un isométrie ssi la matrice M (a,b) est une matrice orthogonale, ssi ses colonnes
forment un systéme orthonormé de R?* (muni de son produit scalaire canonique), ce qui donne

le systéme :
9a? + 8 =1 (1)
12ab + 4b* =0 (2)



L’équation (2) équivaut a b(3a + b) = 0 soit b =0 ou 3a + b = 0.

Si b =0, Péquation (1) donne a = +3.

Si3a+b=0onab=—3a et I'équation (1) donne 9a* + 724> = 1, soit a = +3;.

Les couples pour lesquels f,; est une isométrie sont donc (i—%, O), (%, —%) et (—%, %)

3. Sia=1/9e b= —1/3 onadetM(1/9,—1/3) = —1 d’aprés 1/ donc f,, est une

réflexion plane ou une antirotation. Cherchons I’ensemble des vecteurs invariants : X (z,y, 2)
z 2y 2z

L =z
est invariant ssi f,;, (X) = X ce qui donne le systéme : I %”" +3 % _32?2 =1y qui équivaut
f okt
r+y+ z =0. L’ensemble des vecteurs invariants est le plan P d’équation x + y + z = 0 donc
J1/9,—1/3 est la réflexion de plans P.
Sia=-1/9etb=1/3ona M(-1/9,1/3) = —M (1/9,—1/3), donc det M (—1/9,1/3) =
(—=1)®det M (1/9,—1/3) = +1, donc f—1/9,1/3 est une rotation.

Son axe est ’ensemble des vecteurs invariants : comme précédemment on obtient le systéme

—I4 Wy —y —2r4+y+z =0

3T 3 T3 -9 =
%’”—%—i—%z =1y , équivalent a r—2y+z :O,équivalenté,{ Zﬂ—ty%—z _8.
T+3 -3 == T+y—2: =0 o

En prenant ¢ = x pour parameétre on obtient x = y = 2z = t, donc 'axe est la droite
engendrée par 7 (1,1,1).

L’angle 6 vérifie 2cos@ +1=Tr (M (—1/9,1/3)) = —1 donc cos = —1, soit § = = (27).

204+ 10y +72=0 20+ 10y +72 =0
@1. a. Ona(z,y,z) €kerf <= < z+4y+32=0 << 2y+2=0
—2x —8y —62=0 2 +2=0
En prenant y = ¢ pour paramétre on obtient ker f = {(2t,t, —2t) /t € R}, droite vectorielle en-
gendrée par u = (2,1, —2).
Comme ker f # {0}, f n’est pas injective donc pas bijective, donc A n’est pas inversible.

(L2<—L1—2
(L3<—L1+l

20 +104+ 72 =2 20+ 72 = =8
2. a. Posonsv = (z,1,2). Ona f (v) =ussi{ z+4+32z=1 =1 r+3=-3 =
—2r —8—6z= -2 —2r —62=06
20+ 72z = -8 B B — —~
{93+3z:—3 . On trouve z = —2 et = 3 donc [v = (3,1, -2) |.

20 +10+72 =3
b. De méme, en posant w = (z,1, z) on obtient le systéme ¢ =z +4+3z =1 —
—2r —8—6z= -2

20+ Tz = =T o+ Tr— 7
r+3z=-3 o dont les solutions sont x = 0 et z = —1 donc
r+3z=-3
—2r — 62 =06
w=(0,1,—-1)|

c. La famille est constituée de trois vecteurs dans un espace de dimension 3, il suffit de
prouver qu’elle est libre. Soit (a, 3,7) € R3 tel que au + Bv + yw = (0,0,0); on obtient

204+ 38 =0 a+pB+v=0 a+pB+v=0
le systétme ¢ a+5+~v=0 — 20+ 35 =0 — 20+ 35 =0
2a—28—~v=0 7| —2a-—28-~y=0 | _a-B=0
On obtient a = 3 = v = 0 donc le systéme (u,v,w) est une base de R3.
2 3 0
d. On a par définition de la matrice de passage: P=PF = 1 1 1
-2 -2 -1



3. a. Comme f (u) =(0,0,0), f (v) =wuet f(w)= v la matrice de f dans la base B’ est

A=

o O O
o O =
O = O

b. D’aprés le cours on a| A’ = P~1AP|.

On en déduit (en multipliant & gauche par P et a droite par P~1) que A = PA'P~1.

On a alors : A* = (PA'P7Y)(PA'P™') = PA (P 'P)A'P~! = PATA'P™! = PA?P!
(on a utiliser l'associativité de la mutltiplication des matrices). Or on constate que A”? = (0)
(matrice nulle) donc | A® = (0) |.

4. a. La matrice nulle (0) appartient & Cy car N.(0) = (0).N = (0).

Soient M, M’ € Cxy et A€ R. Ona (AM + M') N = AXMN + M'N = ANM + NM' (car M
et M’ appartiennent & Cy) donc (AM + M')N = N (AM + M'). AM + M’ commute avec N
donc AM + M’ € Cy.

Conclusion : Cy est un sev de Mg (3, 3).

0 a b d e f

b. OnaM € Cyp <= MA' = AM. Orona: MA' =0 d e|letAM=1|g h i

0 g h 00 0

a b c

Onadonc M e Cyp<d=g=h=0eta=b=f=e=1,cequidonne M = |0 a b
0 0 a

0 01
Comme A? =10 0 0| onadonc M = al +bA" + cA™.
0 00
c. Ona M € Cy &< MA = AM < MPA'P™' = PA'P7'M (car A = PA'P™').

En multipliant & droite par P et & gauche par P~! on obtient : P"!MPA’ = A'P~'MP soit
(P7IMP)A" = A (P~'MP) ce qui équivaut a dire que P~'MP € Cy.

D’aprés 4. b. ona P7'MP € Cp <= 3(a,3,7) e R3/PIMP = ol + A"+ ~vA”?.

Comme précedemment on obtient : M = P (al + A" +~yA?)P~! = ol + fPA'P7! +
yPA?P7Y soit M = al + fPA'P~ +~(PAP™Y)" = al + BA +vA%

On adonc : |M € Cy < M €Vect(I, A, A?)|

Le systeéme (I, A, A%) est donc un systéme générateur de Cy. On vérifie que al +3A+\A? =
(0) <= a = =~ = 0 donc ce systéme est libre et c’est donc une base e Cy.

Conclusion : .




