
Exercices Espaces Vectoriels-Matrices

1 Dans R3 muni de sa base canonique (e1; e2; e3) on considère l�endomorphisme u de R3
dé�ni par :

u (e1) = (�1; 1; 3) , u (e2) = (3;�8;�14) , u (e3) = (�2; 5; 9) .
1. Justi�er l�existence et l�unicité de u.
2. Montrer que les formules analytiques de u sont :8<:

x0 = �x+ 3y � 2z
y0 = x� 8y + 5z
z0 = 3x� 14y + 9z

3. Trouver le noyau de u et en donner une base.
Quelle est la dimension de keru ? En déduire le rang de u.

Que peut-on dire de u ?

4. Calculer le rang du système de vecteurs (u (e1) ; u (e2) ; u (e3)).
Retrouver la dimension du noyau de u.

5. Dé�nir les formules analytiques de u2.
Indiquer les calculs qu�il faudrait e¤ectuer pour montrer que u3 = 0 (endomorphisme nul

de R3) (on ne demande pas d�e¤ectuer ces calculs).
6. Soit X0 un élément de R3 tel que u2 (X0) 6= 0. On pose f1 = X0; f2 = u (X0) ; f3 =

u2 (X0).

Montrer que le système (f1; f2; f3) est une base de R3.
2 Question préliminaire.
Soit f une application linéaire de E dans E telle que f � f = IdE.
Soit s = IdE � 2f . Montrer que s � s = IdE.
Soit (e1; e2; e3) la base canonique de R3 et f1 = e2 � e3, f2 = �e1 + 2e2 � e3, f3 = �e1 + e2

éléments de R3.
1. Montrer qu�il existe une unique application linéaire u telle que u (e1) = f1, u (e2) = f2

et u (e3) = f3. Ecrire les formules analytiques de u.

2. Trouver le rang de la famille de vecteurs (f1; f2; f3). Quel est le rang de u ?
Que peut-on en déduire pour u ?

3. Déduire de la question précédente la dimension du noyau de u.
4. Retrouver le résultat de la question précédente en calculant keru et en précisant une

base.

5. Trouver ker (u� Id) et en donner une base.
6. Montrer que u � u = u. Que peut-on en conclure pour u ?
Soit s dé�nie comme dans le préliminaire.

7. Quelle est la nature de s ? Préciser ker (s� Id) et ker (s+ Id) et en donner une base.

3 Soit E l�espace vectoriel des fonctions de R dans R de classe C1 sur R.
On considère dans E les fonctions g1 : x 7�! e2x; g2 : x 7�! ex cosx;et g3 : x 7�! ex sin x.

On veut montrer de plusieurs façons que ces fonctions forment un sytème libre de E.

Supposons donc qu�il existe des réels �; � et 
 tels que �g1+ �g2+ 
g3 = 0, ce qui équivaut
à :

8x 2 R; �e2x + �ex cosx+ 
ex sin x = 0.
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1. En prenant des valeurs convenables pour x montrer que � = � = 
 = 0.
Conclusion pour la famille (g1; g2; g3) ?

2. On veut redémontrer le résultat précédent d�un autre façon.
Si � 6= 0, donner un équivalent au voisinage +1 de �e2x + �ex cosx+ 
ex sin x.
En déduire que � = 0. Conclure.

3. Calculer un développement limité de �g1 + �g2 + 
g3 à l�ordre 2 en 0.
En déduire une nouvelle façon de montrer que (g1; g2; g3) est un sytème libre.

Soit l�application � de E dans E qui à f 2 E associe f"� 2f 0. On admettra sans démon-
stration que � est linéaire.

4. Exprimer � (g1) ;� (g2) ;� (g3) en fonction de g1; g2; g3.
Si F est le sous-espace vectoriel engendré par g1; g2 et g3 on considère dans la question

suivante � comme une application de F dans F que l�on notera encore �.

5. Trouver le noyau de �. � est-il un automorphisme de F ?

4 Partie A

Soit u un endomorphisme de R3 muni de son produit scalaire canonique.
On note k:k la norme euclidienne de R3 et Bc la base canonique de R3.
On dit que u possède la propriété (P) s�il existe une base orthonormée B de R3 et des réels

�1; �2 et �3 tels que la matrice de u dans la base B est

0@�1 0 0
0 �2 0
0 0 �3

1A :
1. Donner quelques exemples d�isométries de E véri�ant la propriété (P).
2. Donner une condition nécessaire et su¢ sante sur �1; �2 et �3 pour qu�un endomorphisme

véri�ant la propriété (P ) soit une isométrie.

Dans les trois questions suivantes u est un endomorphisme de E véri�ant la propriété (P).
3. a. Que peut-on dire de la matrice de passage P de la base canonique Bc à la base B ?
b. Quel lien y a-t�il entre la matrice M de u dans la base Bc et la matrice M 0 de u dans

la base B ?

c. Montrer que la matrice M est symétrique.

4. a. Soit un vecteur X de E. On pose k = max (j�1j ; j�2j ; j�3j).
Montrer que :

ku (X)k � k kXk
(on pourra décomposer X dans la base B).

b. Si k 2 [0; 1[ quelle est la limite de la suite kun (X)k quand n tend vers plus l�in�ni ?
Partie B : etude d un exemple

Soit u l�endomorphisme deR3 dont la matrice dans sa base canonique estM =

0@ 1 �2 �2
�2 1 �2
�2 �2 1

1A.
5. Soient les vecteurs e1 = (1; 1; 1) ; e2 = (�1;�1; 2) et e3 = (�1; 1; 0).
Montrer que B =

�
1p
3
e1;

1p
6
e2;

1p
2
e3

�
est une base orthonormée de R3.

6. Calculer u (ei) en fonction de ei pour i 2 f1; 2; 3g.
En déduire très simplement la matrice M 0 de u dans la base B.

7. Montrer que u véri�e la propriété (P ); préciser B et les réels �1; �2 et �3.
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8. Montrer qu�il existe un réel positif � tel que w = �u soit une isométrie de
�!
E .

En donner la nature et ses éléments caractéristiques.

5 Pour a et b réels, on note M (a; b) la matrice dé�nie par :

M (a; b) =

0@3a 2b 2b
2b 3a 2b
2b 2b 3a

1A ,
et on note fa;b l�endomorphisme ayant pour matrice M (a; b) dans une base orthonormée

d�un espace euclidien E.

1. Calculer le déterminant de M (a; b) (on donnera le résultat sous forme factorisé).

2. Calculer les valeurs de a et b telles que la fa;b soit une isométrie de E.
3. Dans les cas où M (a; b) est une matrice orthogonale avec b 6= 0 préciser la nature de

l�endomorphisme fa;b.

6 On note MR (3; 3) l�espace vectoriel des matrices de type (3; 3) à coe¢ cients réels et I la
matrice identité.

Soit f l�endomorphisme de R3 dont la matrice dans la base canonique B de R3 est :

A =

0@ 2 10 7
1 4 3
�2 �8 �6

1A
et on pose u = (2; 1;�2) :
1. Montrer que ker f =Vect(u).
La matrice A est-elle inversible ?

2. a. Déterminer le vecteur v de R3, dont la deuxième coordonnée dans B vaut 1, et tel
que
f(v) = u.

b. Déterminer le vecteur w de R3, dont la deuxième coordonnée dans B vaut 1, et qui
véri�e
f(w) = v.

c. Montrer que (u; v; w) est une base de R3 que l�on notera B0.
d. Ecrire la matrice de passage P de la base B à la base B0.
3. a. En utilisant les questions précédentes, et sans calculs, écrire la matrice A0 de f

relativement à la base B0 = (u; v; w).

b. Donner la relation liant les matrices A, A0, P et P�1. En déduire que, pour tout entier
k supérieur ou égal à 3, on a : A3 = 0.

4. Soit N 2 MR (3; 3). On note CN l�ensemble des matrices (3; 3) qui commutent avec /A
c�est à dire :

CN = fM 2MR (3; 3) =MN = NMg .
a. Montrer que CN est un sous-espace vectoriel de MR (3; 3).

b. Montrer que CA0 = Vect(I;A0; A02).

(pour M 2 CA0 on pourra poser M =

0@a b c
d e f
g h i

1A).
c. Établir que : M 2 CA () P�1MP 2 CA0.
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En déduire que CA =Vect(I; A;A2). Quelle est la dimension de CA ?

Correction :
1 1. Comme (e1; e2; e3) est une base de R3 il existe une unique application linéaire u

telle que u (e1) = (�1; 1; 3), u (e2) = (3;�8;�14), u (e3) = (�2; 5; 9) (théorème "détermination
d�une application linéaire").

2. Pour (x; y; z) = xe1 + ye2 + ze3 on a u (x; y; z) = u (xe1 + ye2 + ze3) = xu (e1) +
yu (e2) + zu (e3) (linéarité de u), soit u (x; y; z) = x (�1; 1; 3) + y (3;�8;�14) + z (�2; 5; 9) =
(�x+ 3y � 2z) e1 + (x� 8y + 5z) e2 + (3x� 14y + 9z) e3.

Les formules analytiques de u sont donc

8<:
x0 = �x+ 3y � 2z
y0 = x� 8y + 5z
z0 = 3x� 14y + 9z

.

3. On a (x; y; z) 2 keru ssi u (x; y; z) = (0; 0; 0) ce qui équivaut au système

8<:
�x+ 3y � 2z = 0
x� 8y + 5z = 0
3x� 14y + 9z = 0

.

On le résout par la méthode de Gauss en e¤ectuant les combinaisons linéaires : L2  �

L1 + L2; L3  � 3L1 + L2 et on obtient le système équivalent :

8<:
�x+ 3y � 2z = 0
�5y + 3z = 0
�5y + 3z = 0

. En

prenant z = t pour inconnue auxiliaire on obtient : y = 3
5
t; x = �1

5
t.

On a donc keru =
��
�1
5
t; 3
5
t; t
�
=t 2 R

	
.

Comme
�
�1
5
t; 3
5
t; t
�
= t

�
�1
5
; 3
5
; 1
�
, keru est la droite vectorielle engendrée par le vecteur�

�1
5
; 3
5
; 1
�
(qui en est une base). On a donc dimkeru = 1 .

Comme keru 6= f(0; 0; 0)g l�application u n�est pas injective.

4. On a rg ((u (e1) ; u (e2) ; u (e3))) = rg

0@�1 3 �2
1 �8 5
3 �14 9

1A =
C2 3C1+C2;C3 2C1�C3

rg

0@�1 0 0
1 �5 �3
3 �5 �3

1A =

2.

D�après le théorème du rang on a : dimR3 = dimker'+ rg (') donc dimker (') = 1.
5. Pour (x; y; z) 2 R3 on a u2 (x; y; z) = u (x0; y0; z0) (x0; y0; z0 dé�nies par les formules ana-

lytiques de u), soit u2 (x; y; z) = (�x0 + 3y0 � 2z0; x0 � 8y0 + 5z0; 3x0 � 14y0 + 9z0) = (x"; y"; z")
avec : x" = � (�x+ 3y � 2z)+ 3 (x� 8y + 5z)� 2 (3x� 14y + 9z) = �2x+ y� z. On trouve,
par un calcul analogue : y" = 6x� 3y + 3z et z" = 10x� 5y + 5z, ce qui donnent les formules
analytiques de u2.

Pour véri�er que u3 = 0 on montre que�x"+3y"�2z" = x"�8y"+5z" = 3x"�14y"+9z" =
0.

6. Supposons que af1 + bf2 + cf3 = 0, soit aX0 + bu (X0) + cu
2 (X0) = 0.

En prenant l�image par u2 des deux membres il reste, vu que u3 = 0 : au2 (X0) = 0. Comme
u2 (X0) 6= 0 on a a = 0. On a donc bu (X0) + cu

2 (X0) = 0. En composant par u on obtient de
même b = 0, donc cu2 (X0) = 0 d�où c = 0.

Le système (f1; f2; f3) est donc un sytème libre que R3.
De plus il possède 3 éléments et dimR3 = 3 donc (f1; f2; f3) est une base de R3.
2 On a s � s = (IdE � 2f) � (IdE � 2f) = IdE � 2f � 2f +4f � f = IdE (car f � f = IdE).
1. (e1; e2; e3) étant une base de R3, le théorème "détermination d�une application linéaire"

assure l�existence et l�unicité de u.

Si (x; y; z) 2 R3, on a : u (x; y; z) = u (xe1 + ye2 + ze3) = xu (e1) + yu (e2) + zu (e3) (car
u linéaire), soit u (x; y; z) = x (e2 � e3) + y (�e1 + 2e2 � e3) + z (�e1 + e2) = (�y � z) e1 +
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(x+ 2y + z) e2 + (�x� y) e3. D�où les formules analytiques de u :

8<:
x0 = �y � z
y0 = x+ 2y + z
z0 = �x� y

.

2. On a rg (f1; f2; f3) = rg

0@ 0 �1 �1
1 2 1
�1 �1 0

1A = rg

0@ 0 �1 �1
1 1 1
�1 0 0

1A (C2  C2 � C1). Les

deux dernières colonnes étant égales on a : rg (f1; f2; f3) = 2 .

Le rang de ce système est aussi égal au rang de u. Comme ce rang n�étant pas égal à 3
l�application u n�est ni injective ni surjective.

3. D�après le théorème du rang on a : dimR3 = dimkeru + rgu. Comme dimR3 = 3 et
rg (u) = 2 on a dimkeru = 1 .

4. On a X = (x; y; z) 2 keru () u (x; y; z) = (0; 0; 0) ce qui équivaut au système

:

8<:
�y � z = 0
x+ 2y + z = 0
�x� y = 0

. En bloquant la deuxième équation et en l�ajoutant à la première le

système équivaut à :

8<:
x+ 2y + z = 0
x+ y = 0
�x� y = 0

, ou encore
�
x+ 2y + z = 0
x+ y = 0

.

En prenant x = t comme paramètre on obtient (x; y; z) = (t;�t; t) = t (1;�1; 1).
Un base de keru est donc ((1;�1; 1)), et on retrouve bien que dimkeru = 1.
5. On a X = (x; y; z) 2 ker (u� Id) () u (x; y; z) = (x; y; z) ce qui équivaut au sys-

tème

8<:
�y � z = x
x+ 2y + z = y
�x� y = z

, ou encore à l�équation x+ y + z = 0 . En prenant par exemple pour

paramètres x = � et y = �, on obtient : (x; y; z) = (�; �;��� �). Comme (�; �;��� �) =
� (1; 0;�1)+� (0; 1;�1), le système (u; v) avec u = (1; 0;�1) et v = (0; 1;�1) est générateur de
ker (u� Id). Comme il est libre (u et v n�étant pas colinéaires) c�est une base de ker (u� Id).
6. On cherche les formules analytiques de u�u en calculant : x" = �y0�z0 = � (x+ 2y + z)�

(�x� y) = �y � z; de même y" = x0 + 2y0 + z0 = x + 2y + z et z" = �x0 � y0 = �x� y. On
en conclut que u � u = u et donc que u est une projection.

7. D�après la question préliminaire on a s � s = Id donc s est une symétrie (par rapport à
ker (s� Id) et parallèlement à ker (s+ Id)).
On a X 2 ker (s� Id) () s (X) � X = 0 () s (X) = X () X � 2u (X) = X ()

u (X) = 0 donc ker (s� Id) = keru .
De même on a X 2 ker (s+ Id) () s (X) +X = 0 () s (X) = �X () X � 2u (X) =

�X () u (X) = X donc on a ker (s+ Id) = ker (u� Id) .

4 Partie A

1. Les endomorphismes de R3ayant pour matrice une matrice diagonale dont les éléments de
la diagonales valent �1 véri�ent la propriété (P ) (car ces matrices sont orthogonales et la base
canonique Bc est orthonormée pour le produit scalaire canonique) : c�est le cas de l�identité et
de symétries orthogonales par rapport à un plan ou une droite.

2. L�endomorphisme véri�e (P ) ssi la matrice M 0 =

0@�1 0 0
0 �2 0
0 0 �3

1A dans la base orthonor-

mée B est orthogonale ce qui équivaut à �21 = �
2
2 = �

2
3 = 1, soit �i = �1 pour i = 1; 2; 3.
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3. a. La matrice de passage P de la base canonique Bc à la base B est la matrice dont les
colonnes sont les coordonnées des vecteurs de B dans la base Bc. Ces colonnes forment donc
un système orthonormé de R3 donc la matrice P est orthongonale.

b. On a M 0 = P�1MP d�après le cours.

c. D�après 3/ b/ on a M = PM 0P�1 donc MT = (PM 0P�1)
T
= (P�1)

T
M 0TP T .

Comme la matriceM 0 est symétrique on aM 0T =M 0 et comme la matrice P est orthogonale
on a P�1 = P T donc MT =

�
P T
�T
M 0TP�1 = PM 0P�1 soit MT = M donc la matrice M est

symétrique.

4. a. Soit B = (e1; e2; e3) et (x; y; z) les coordonnées du vecteur X dans la base B.

On a ku (X)k2 = ku (xe1 + ye2 + ze3)k2 = kxu (e1) + yu (e2) + zu (e3)k2 (car u est linéaire),
soit ku (X)k2 = kx�1e1 + y�2e2 + z�3e3k2 (car u (e1) = �1e1; u (e2) = �2e2; u (e3) = �3e3). La
base B étant orthonormée on a donc : ku (X)k2 = (x�1)2+(y�2)2+(z�3)2 = �21x2+�22y2+�23z2.
Or ; �21; �

2
2 et �

2
3 sont � [max (j�1j ; j�2j ; j�3j)]

2 et x2+ y2+ z2 = kXk2 donc ku (X)k � k kXk .
b. On a ku2 (X)k � k ku (X)k � k2 kXk et par une récurrence facile on a 0 � kun (X)k �

kn kXk pour tout entier naturel n. Comme k 2 [0; 1[ on a lim kn = 0 donc lim kn kXk = 0 et
d�après le théorème de l�étau on a lim kun (X)k = 0 .

Partie B : etude d un exemple

5. Les vecteurs e1, e2 et e3 sont orthogonaux deux à deux et de normes respectives
p
3;
p
6

et
p
2 donc le système

�
1p
3
e1;

1p
6
e2;

1p
2
e3

�
est orthonormé.

Il est donc libre et comme il a trois élément dans R3 de dimension 3 c�est donc une base
orthonormée de R3.
6. On a immediatement Me1 = �3e1;Me2 = 3e2 et Me3 = 3e3; donc M

�
1p
3
e1

�
=

� 3p
3
e1;M

�
1p
6
e2

�
= 3p

6
e2 et M

�
1p
2
e3

�
= 3p

2
e3.

7. La matriceM 0 de u dans la base B est donc

0@�3 0 0
0 3 0
0 0 3

1A donc u véri�e la propriété (P )

avec �1 = �3; �2 = 3 et �3 = 3.
8. Les colonnes de M forment un système orthogonal et la norme de chaque colonne vaut

3 donc la matrice 1
3
M est orthogonale donc w = 1

3
u est une isométrie de R3.

La matrice de w dans la base B précédente est

0@�1 0 0
0 1 0
0 0 1

1A. On reconnaît la matrice de
la symétrie orthogonale de plan engendré par (e1; e2).

5 1. On a detM (a; b) =

������
3a 2b 2b
2b 3a 2b
2b 2b 3a

������ =
L1 L2+L3

������
3a+ 4b 3a+ 4b 3a+ 4b
2b 3a 2b
2b 2b 3a

������, donc detM (a; b) =

(3a+ 4b)

������
1 1 1
2b 3a 2b
2b 2b 3a

������ =
C2 C2�C1
C3 C3�C1

(3a+ 4b)

������
1 0 0
2b 3a� 2b 0
2b 0 3a� 2b

������, d�où detM (a; b) = (3a+ 4b) (3a� 2b)2 .

2. fa;b est un isométrie ssi la matrice M (a; b) est une matrice orthogonale, ssi ses colonnes
forment un système orthonormé de R3 (muni de son produit scalaire canonique), ce qui donne
le système : �

9a2 + 8b2 = 1 (1)
12ab+ 4b2 = 0 (2)

.
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L�équation (2) équivaut à b (3a+ b) = 0 soit b = 0 ou 3a+ b = 0.

Si b = 0, l�équation (1) donne a = �1
3
.

Si 3a+ b = 0 on a b = �3a et l�équation (1) donne 9a2 + 72a2 = 1, soit a = �1
9
.

Les couples pour lesquels fa;b est une isométrie sont donc
�
�1
3
; 0
�
,
�
1
9
;�1

3

�
et
�
�1
9
; 1
3

�
.

3. Si a = 1=9 et b = �1=3 on a detM (1=9;�1=3) = �1 d�après 1/ donc fa;b est une
ré�exion plane ou une antirotation. Cherchons l�ensemble des vecteurs invariants : X (x; y; z)

est invariant ssi fa;b (X) = X ce qui donne le système :

8<:
x
3
� 2y

3
� 2z

3
= x

�2x
3
+ y

3
� 2z

3
= y

�2x
3
� 2y

3
+ z

3
= z

qui équivaut

x+ y + z = 0. L�ensemble des vecteurs invariants est le plan P d�équation x+ y + z = 0 donc
f1=9;�1=3 est la ré�exion de plans P .

Si a = �1=9 et b = 1=3 on a M (�1=9; 1=3) = �M (1=9;�1=3), donc detM (�1=9; 1=3) =
(�1)3 detM (1=9;�1=3) = +1, donc f�1=9;1=3 est une rotation.
Son axe est l�ensemble des vecteurs invariants : comme précédemment on obtient le système8<:
�x
3
+ 2y

3
+ 2z

3
= x

2x
3
� y

3
+ 2z

3
= y

2x
3
+ 2y

3
� z

3
= z

, équivalent à

8<:
�2x+ y + z = 0
x� 2y + z = 0
x+ y � 2z = 0

, équivalent à
�
�2x+ y + z = 0
x� y = 0

.

En prenant t = x pour paramètre on obtient x = y = z = t, donc l�axe est la droite
engendrée par �!n (1; 1; 1).
L�angle � véri�e 2 cos � + 1 = Tr (M (�1=9; 1=3)) = �1 donc cos � = �1, soit � � � (2�).

6 1. a. On a (x; y; z) 2 ker f ()

8<:
2x+ 10y + 7z = 0
x+ 4y + 3z = 0
�2x� 8y � 6z = 0

()

8<:
2x+ 10y + 7z = 0
2y + z = 0
2y + z = 0

(L2  L1 � 2L2)
(L3  L1 + L3)

.

En prenant y = t pour paramètre on obtient ker f = f(2t; t;�2t) =t 2 Rg, droite vectorielle en-
gendrée par u = (2; 1;�2).
Comme ker f 6= f0g, f n�est pas injective donc pas bijective, donc A n�est pas inversible.

2. a. Posons v = (x; 1; z). On a f (v) = u ssi

8<:
2x+ 10 + 7z = 2
x+ 4 + 3z = 1
�2x� 8� 6z = �2

()

8<:
2x+ 7z = �8
x+ 3z = �3
�2x� 6z = 6

()�
2x+ 7z = �8
x+ 3z = �3 . On trouve z = �2 et x = 3 donc v = (3; 1;�2) .

b. De même, en posant w = (x; 1; z) on obtient le système

8<:
2x+ 10 + 7z = 3
x+ 4 + 3z = 1
�2x� 8� 6z = �2

()8<:
2x+ 7z = �7
x+ 3z = �3
�2x� 6z = 6

()
�
2x+ 7z = �7
x+ 3z = �3 dont les solutions sont x = 0 et z = �1 donc

w = (0; 1;�1) .
c. La famille est constituée de trois vecteurs dans un espace de dimension 3, il su¢ t de
prouver qu�elle est libre. Soit (�; �; 
) 2 R3 tel que �u + �v + 
w = (0; 0; 0); on obtient

le système

8<:
2�+ 3� = 0
�+ � + 
 = 0
�2�� 2� � 
 = 0

()
L1$L2

8<:
�+ � + 
 = 0
2�+ 3� = 0
�2�� 2� � 
 = 0

()
L3 L1+L3

8<:
�+ � + 
 = 0
2�+ 3� = 0
��� � = 0

.

On obtient � = � = 
 = 0 donc le système (u; v; w) est une base de R3.

d. On a par dé�nition de la matrice de passage : P = PB0B =

0@ 2 3 0
1 1 1
�2 �2 �1

1A.
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3. a. Comme f (u) = (0; 0; 0) ; f (v) = u et f (w) = v la matrice de f dans la base B0 est

A0 =

0@0 1 0
0 0 1
0 0 0

1A .
b. D�après le cours on a A0 = P�1AP .
On en déduit (en multipliant à gauche par P et à droite par P�1) que A = PA0P�1.
On a alors : A2 = (PA0P�1) (PA0P�1) = PA0 (P�1P )A0P�1 = PA0IA0P�1 = PA02P�1

(on a utiliser l�associativité de la mutltiplication des matrices). Or on constate que A02 = (0)
(matrice nulle) donc A3 = (0) .
4. a. La matrice nulle (0) appartient à CN car N: (0) = (0) :N = (0).
Soient M;M 0 2 CN et � 2 R. On a (�M +M 0)N = �MN +M 0N = �NM +NM 0 (car M

et M 0 appartiennent à CN) donc (�M +M 0)N = N (�M +M 0). �M +M 0 commute avec N
donc �M +M 0 2 CN .
Conclusion : CN est un sev de MR (3; 3).

b. On aM 2 CA0 ()MA0 = A0M . Or on a : MA0 =

0@0 a b
0 d e
0 g h

1A et A0M =

0@d e f
g h i
0 0 0

1A.
On a donc M 2 CA0 () d = g = h = 0 et a = b = f = e = i, ce qui donne M =

0@a b c
0 a b
0 0 a

1A.
Comme A02 =

0@0 0 1
0 0 0
0 0 0

1A on a donc M = aI + bA0 + cA02.

c. On a M 2 CA () MA = AM () MPA0P�1 = PA0P�1M (car A = PA0P�1).
En multipliant à droite par P et à gauche par P�1 on obtient : P�1MPA0 = A0P�1MP soit
(P�1MP )A0 = A0 (P�1MP ) ce qui équivaut à dire que P�1MP 2 CA0.
D�après 4. b. on a P�1MP 2 CA0 () 9 (�; �; 
) 2 R3=P�1MP = �I + �A0 + 
A02.
Comme précedemment on obtient : M = P (�I + �A0 + 
A02)P�1 = �I + �PA0P�1 +


PA02P�1, soit M = �I + �PA0P�1 + 
 (PAP�1)
2
= �I + �A+ 
A2.

On a donc : M 2 CA ()M 2Vect(I; A;A2) .
Le système (I; A;A2) est donc un système générateur de CA. On véri�e que �I+�A+�A2 =

(0)() � = � = 
 = 0 donc ce système est libre et c�est donc une base e CA.
Conclusion : dimCA = 3 .
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