
Exercices Suites réelles
1 Soit la suite (un) dé�nie par u0 2 ]1; 2[ et, pour tout entier n � 0 :

un+1 = un +
1

un
� 1.

1. Représenter graphiquement les premiers termes de cette suite.
2. a. Montrer que pour tout entier naturel n on a : un > 0 puis pour tout entier naturel

n � 1, un � 1.
2. b. Démontrer que la suite (un) est convergente et calculer sa limite.
On veut démontrer le résultat précédent d�une autre façon.

3. a. Montrer que pour tout entier naturel n on a :

jun+1 � 1j � (un � 1)2 :

En déduire que : 8n 2 N; jun � 1j � ju0 � 1j2
n

:

Retrouver le résultat de la question 2/ b/.

3. b. On prend u0 = 1; 5 . Trouver un entier naturel N tel que :

8n 2 N; n � N =) jun � 1j � 10�10.

2 On considère la suite (xn) dé�nie par récurrence par :

x0 = 1 et 8n 2 N; xn+1 =
xn

(1 + xn)
2 .

1. Etudier la convergence de la suite (xn) et trouver sa limite éventuelle.
2. Montrer que la suite (vn) dé�nie, pour n � 1, par vn = 1

xn
� 1

xn�1
est convergente et

trouver la limite.

3. Montrer que la suite (xn) est équivalente à 1
2n
.

On rappelle que si une suite (�n) est telle que lim
n�!+1

(�n � �n�1) = l alors lim
n�!+1

�n
n
= l

(voir feuille 3, I/ 3/ b/).

Que pensez-vous de la vitesse de convergence de (xn) par rapport à celle de (un) ?

Véri�er en calculant à la calculatrice une valeur approchée de x100.

3 Soit n un entier naturel non nul et a un réel strictement positif.
On se propose d�étudier les solutions de l�équation :

1

x
+

1

x+ 1
+

1

x+ 2
: : :+

1

x+ 2n
= a (En).

A cet e¤et on considère la fonction fn de la variable réelle x dé�nie par :

fn (x) =
1

x
+

1

x+ 1
+

1

x+ 2
: : :+

1

x+ 2n
� a.

1. Dresser le tableau de variation de fn.
En déduire le nombre de solutions de l�équation (En).

2. Montrer qu�il y a une unique solution, que l�on notera xn, dans l�intervalle ]0;+1[.
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3. Démontrer que pour tout réel x > 0 on a :

1

x+ 1
< ln (x+ 1)� ln (x) < 1

x
.

En déduire que pour tout réel x strictement positif on a :

fn (x)�
1

x
+ a < ln

�
1 +

2n

x

�
< fn (x)�

1

x+ 2n
+ a,

puis que : a� 1

xn
< ln

�
1 +

2n

xn

�
< a� 1

xn + 2n
.

4. Déduire de la question précédente que pour tout entier naturel non nul n :

xn >
2n

ea � 1 .

Quelle est la limite de la suite (xn) ?

5. Quelle est la limite de la suite ln
�
1 +

2n

xn

�
? Prouver qu�il existe un réel � strictement

positif, que l�on calculera, tel que : xn � �n.
4 On considère la fonction f dé�nie sur [0; 1] par f (x) = 2xex.

1. Montrer que f réalise une bijection de [0; 1] dans un ensemble à préciser. Donner des
propriétés de f�1 (bijection réciproque de f ) et en donner le tableau de variation.

2. Montrer qu�il existe un unique réel � de l�intervalle ]0; 1[ tel que

�e� = 1.

On dé�nit la suite (un) par u0 = � et un+1 = f�1 (un) pour tout entier naturel n.

3. Montrer que : 8n 2 N; un 2 ]0; 1[.
4. a. Montrer que pour tout réel x de [0; 1] on a f (x)�x � 0, et que l�égalité ne se produit

que pour x = 0. Que peut-on en déduire sur le sens de variation de (un) ?

b. En déduire que la suite (un) est convergente puis qu�elle converge vers 0.

On pose pour tout entier naturel n : Sn =
nX
k=0

uk.

5. a. Montrer que pour tout entier naturel n on a :

un+1 =
1

2
une

�un+1.

b. En déduire par récurrence que un = e�Sn

2n
.

c. Montrer que pour tout entier naturel n on a :

un �
�
1

2

�n
.

En déduire que la suite (Sn) est majorée puis qu�elle est convergente.

Soit L sa limite. Montrer que :
� � L � 2.

d. Donner un équivalent de (un).
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5 On considère, pour n 2 N�, l�application 'n de R+ dans R dé�nie par :

'n (x) = x
n + xn�1 + : : :+ x� 1;

et l�équation 'n (x) = 0 soit x
n + xn�1 + : : :+ x = 1 pour x 2 R+.

1. Montrer que cette équation a une unique solution xn sur R+ et que pour tout entier
naturel n on a xn 2 ]0; 1]. Calculer x1 et x2.
2. Pour x 2 ]0; 1], comparer 'n (x) et 'n+1 (x).
En déduire que la suite (xn) est décroissante. Conclusion pour cette suite ?

3. Etablir avec soin que : lim
n!+1

xnn = 0.

4. Montrer que pour tout entier n non nul on a : xn (1� xnn) = 1� xn.
En déduire la limite de la suite (xn).

On pose xn = 1
2
(1 + "n) avec lim

n!+1
"n = 0.

5. Véri�er que : 8n 2 N�; (1 + "n)n+1 = 2n+1"n et en déduire que :

8n 2 N�; (n+ 1) "n ln (1 + "n) = (n+ 1) "n ln 2 + "n ln "n.

6. Déterminer alors la limite de (n+ 1) "n puis celle de (1 + "n)
n+1.

7. Déduire des questions précédentes que "n �
n!+1

1
2n+1

puis que xn = 1
2

�
1 + 1

2n+1
+ o

�
1

2n+1

��
.

Dans les questions suivantes on pose n = 2. On note � = x2.

Soit f la fonction dé�nie sur R+ par f (x) = 1
1+x
.

8. a. Montrer que f
��
1
2
; 1
��
�
�
1
2
; 1
�
.

b. Soit la suite récurrente (up) dé�nie par : u0 = 1 et up+1 = f (up).
Montrer que : 8p 2 N; jup+1 � �j � 2

3
jup � �j (indication : on pourra écrire, après l�avoir

justi�é, que � = f (�)).

c. En déduire la limite de la suite (up) quand p tend vers +1.

6 Partie 1. Pour tout entier naturel n � 1 on considère la suite (yn) dé�nie par :

yn =
nX
k=1

1

k
.

1. Montrer que pour tout entier naturel k � 1 on a 1
k+1

�
R k+1
k

dt
t
. Illustrer graphiquement.

2. En déduire que :
8n 2 N�; yn � ln (n) + 1.

Partie 2.
On considère la suite (xn) dé�nie par son premier terme x0 = 1 et la relation de récurrence

xn+1 = xn +
1

xn
.

3. Représenter graphiquement les premiers termes de cette suite. Emettre des conjectures
sur le sens de varition et la limite de (xn).

4. Etudier le sens de variation de (xn). En raisonnant par l�absurde montrer que la suite
(xn) diverge vers +1.
5. Pour tout entier naturel k exprimer x2k+1 � x2k en fonction de x2k.
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En déduire que pour tout entier naturel n non nul on a : x2n = 2n+ 1 +
n�1X
k=0

1
x2k
.

6. Retrouver que la suite (xn) diverge vers +1.
7. A l�aide du résultat des questions 2/ et 5/ montrer que pour tout entier n supérieur ou

égal à 2 on a :

x2n � 2n+
5

2
+
ln (n� 1)

2
:

(Indication : on notera que, d�après 5/ on a x2k � 2k pour tout entier naturel k � 1).
8. En déduire un encadrement de (xn) puis que (xn) �

p
2n.
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Partie 3.
Cette partie est indépendante des deux autres.

On considère maintenant la suite récurrente (un) dé�nie par son premier terme u0 = 3=2 et
la relation de récurrence :

un+1 = un +
1

un
� 1.

9. Montrer que : 8n 2 N; un � 1. Démontrer que la suite (un) est convergente et calculer
sa limite.

10. Montrer que : 8n 2 N; (un+1 � 1) � (un � 1)2.

En déduire que : 8n 2 N; jun � 1j �
1

22n
.

Trouver un rang n tel que jun � 1j < 10�6. Faites un commentaire sur la vitesse de conver-
gence de la suite jun � 1j.
11. Montrer que pour tout réel 0 < a < 1 on a : jun � 1j = o (an).

7 Soit la suite (xn) dé�nie pour tout entier naturel n par :8<: x0 = 0

xn+1 =
x2n + 3

2 (xn + 1)

.

1. Montrer que pour tout entier naturel n supérieur ou égal à 1 on a : xn � 1.
2. Montrer que (xn) est convergente et trouver sa limite.
3. Montrer que pour tout entier naturel n on a : jxn+1 � 1j � 1

2
jxn � 1j.

Retrouver les résultats de la question précédente.

8 Pour tout entier naturel n � 2 on dé�nit sur l�intervalle [0; 1] la fonction fn par

fn (x) = x
n � nx+ 1:

1. Montrer que pour tout n � 2 l�équation fn (x) = 0 a une unique solution xn sur [0; 1].
Montrer que : 8n 2 N� f0; 1g ; 0 < xn � 1.
2. En s�inspirant de l�exercice IX/ de la feuille 9 montrer que la suite (xn) est convergente.
3. En remarquant que pour tout entier n � 2, xn = xnn+1

n
, montrer que :

8n 2 N; 0 < xn �
2

n
:

4. Déterminer la limite de la suite (xn) et montrer que xn s
1

n
.

On veut dans la suite améliorer ce résultat. On pose, pour n � 2, yn = xn �
1

n
.

5. a. Montrer que les suites (nyn) et (n2yn) convergent vers 0.
b. Véri�er que pour tout entier n � 2, yn = 1

nn+1
en ln(1+nyn).

En déduire que yn s 1
nn+1

, puis que xn = 1
n
+ 1

nn+1
+ o

�
1

nn+1

�
(une telle écriture s�appelle

développement asymptotique de la suite (xn)).

9 Soient (un) et (vn) les deux suites réelles dé�nies par :

u0 = a; v0 = b et 8n 2 N; un+1 =
un + vn
2

; vn+1 =
2unvn
un + vn

5



où a et b sont deux réels donnés tels que a > b > 0.

1. Montrer que pour tout entier naturel n on a un > vn.
2. Montrer que les suites (un) et (vn) convergent vers la même limite.
3. Montrer que la limite commune des suites (un) et (vn) est l =

p
ab.

Dans la suite on prend a = 2 et b = 1.

4. Montrer que :

8n 2 N; jun+1 � vn+1j �
(un � vn)2

2
.

En déduire que :

8n 2 N; jun � vnj �
1

22n�1
:

A l�aide de la calculatrice, trouver un entier n tel que un et vn soient des valeurs approchées
(par excès et par défaut) de

p
2 à 10�10 près.

10 Question préliminaire : montrer que pour tout entier naturel n supérieur ou égal à 1
on a :

nX
k=1

1

2k
= 1� 1

2n
.

1. Soient n 2 N� et x1; x2; : : : ; xn des réels compris entre 0 et 1.
Montrer que :

nY
i=1

(1� xi) � 1�
nX
i=1

xi.

On considère la suite (Sn) dé�nie par :

8n 2 N�; Sn =
nY
k=1

�
1� 1

2k

�
.

2. Démontrer que la suite (Sn) est décroissante.
Que peut-on en déduire au point de vue de sa convergence ?

3. A l�aide de la question 1/ montrer que :

8n 2 N�; Sn �
1

2n
.

4. Montrer que pour tout réel x de l�intervalle [0; 1[ on a :

ln (1� x) � �x.

En déduire que :
8n 2 N�; Sn � e�1=2.

Donner un encadrement de la limite de la suite (Sn).

11 Soit k un entier naturel non nul.

1. Montrer que l�équation arctanx = x � k� a une unique solution xk sur l�intervalle�
k�; �

2
+ k�

�
.

Trouver le limite de la suite (xk) et en trouver un équivalent.

2. Montrer que lim
k!+1

(xk � k�) = �
2
.
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3. Montrer que : 8x > 0; �
2
� arctan (x) = arctan

�
1
x

�
.

En déduire que, si on pose � k = �
2
� (xk � k�), on a :

8k 2 N�; arctan
�

1

(k + 1=2)�

�
� � k � arctan

�
1

k�

�
:

4. Donner un équivalent de � k lorsque k tend vers +1 (s�exprimant simplement en fonction
de k).

En déduire que : xk = k� + �
2
� 1

k�
+ o

�
1
k

�
.

Dans la suite on �xe une valeur de k dans N� et on cherche une valeur approchée de
�k = xk � k�.
On dé�nit la fonction f par f (x) = arctan (x+ k�). On remarquera que f (�k) = �k.

5. Montrer qu�il existe un réel �k 2 [0; 1[ tel que :

8x 2 R�+; 0 < f 0 (x) � �k.

On dé�nit la suite réelle (un) par u0 = 0 et pour tout entier naturel n, un+1 = f (un).

6. Montrer que :
8n 2 N; 0 � �k+1 � un+1 � �k (�k � un) .

En déduire que la suite (un) converge vers �k.

12 1. Montrer que pour tout entier naturel non nul n et tout réel � de l�intervalle ]0; 1[ :

(1� �)n � 1� n�

de deux façons : (i) par récurrence; (ii) en étudiant une fonction.
On considère la suite (un) dé�nie par : 8n 2 N�; un =

�
1 + 1

n

�n
.

2. Montrer que :

8n 2 N�;
�
1 + 1

n+1

�n+1�
1 + 1

n

�n =

�
1 +

1

n+ 1

��
1� 1

(n+ 1)2

�n
.

3. Déduire des deux questions précédentes que la suite (un) est croissante.
4. En écrivant

�
1 + 1

2n

�n �
1� 1

2n

�n
=
�
1� 1

4n2

�n
pour tout entier naturel n non nul montrer

que :

8n 2 N�;
�
1 +

1

2n

�n
� 2.

En déduire que la suite (un) est majorée. Que peut-on dire de la suite (un) ?

13 Pour x réel positif ou nul on pose :

f (x) =
x

1 + x2
:

1. Montrer que pour tout réel positif ou nul on a : jf (x)� xj � x3.
En déduire un encadrement de f (x) valable pour x � 0.

2. Montrer à l�aide d�un encadrement que la suite (yn) dé�nie pour n � 1 par : yn =
nP
k=1

k3

n6

converge vers 0.
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3. Déduire des questions précédentes que la suite (xn) dé�nie pour n � 1 par xn =
nP
k=1

f
�
k
n2

�
est convergente et déterminer sa limite l.

4. Montrer que xn� l � 1
2n
(on pourra admettre dans cette question seulement que

nP
k=1

k3 =

n2(n+1)2

4
).

14 Soit la suite (un) dé�nie pour n � 1 par :

un =
1� 3� 5� : : :� (2n� 1)
2� 4� 6� : : :� (2n) :

1. Exprimer un à l�aide de factorielles.
2. Etudier le sens de variation de (un).
Démontrer que la suite (un) est convegente.

On pose vn = (n+ 1)u2n.

3. Etudier le sens de variation de (vn) et montrer que la suite (vn) est convegente.
En déduire la limite de la suite (un).

4. a. Simpli�er :
2nY
k=2

�
1� 1

k

�
.

b. En remarquant que un =
nQ
k=1

�
1� 1

2k

�
= 1

2

nQ
k=2

�
1� 1

2k

�
déduire de la question précé-

dente que

8n � 2; u2n �
1

4n
.

puis que la limite de la suite (vn) est une constante C strictement positive.

5. Donner un équivalent de (un) faisant intervenir C.

15 Soit la suite (xn) dé�nie par x0 2 [0; 1] et :

8n 2 N; xn+1 =
r
1 + xn
2

.

1. Montrer que la suite (xn) est convergente et calculer sa limite.
On veut retrouver le résultat précédent de deux autres façons.

2. Trouver un réel k 2 [0; 1[ tel que :

8n 2 N; jxn+1 � 1j � k jxn � 1j .

Retrouver le résultat de la question 1/.

3. a. Calculer, pour x réel, cos (2x) en fonctin de cos (x).
b. On pose x0 = cos (�) avec � 2

�
0; �

2

�
.

Montrer que pour tout entier naturel n on a :

xn = cos
� �
2n

�
.
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Retrouver le résultat de la question 1/.

16 On dé�nit la suite réelle (un) par :

u0 = 0 et 8n 2 N; un+1 =
2un � 1
2un + 5

:

Soit f l�application de Rn f�5=2g dé�nie par f (x) = 2x� 1
2x+ 5

.

1. Montrer que la suite (vn) dé�nie par vn =
un + 1=2

un + 1
est une suite géométrique dont on

déterminera le premier terme et la raison. En déduire vn en fonction de n.

2. Calculer un en fonction de vn et en déduire l�expression de un en fonction de n puis la
limite de (un).

17 1. Démontrer par récurrence sur n que :

8n 2 N�;
nX
k=1

1

k (k + 1)
= 1� 1

n+ 1
.

On veut démontrer cette formule d�une autre façon.

2. Montrer qu�il existe deux réels a et b tels que :

8k 2 N�; 1

k (k + 1)
=
a

k
+

b

k + 1
.

Par un procédé "en cascade" donner une autre démonstration de la formule du 1/.

3. Pour n 2 N� on pose xn =
nX
k=1

1
k(k+1)

.

Quelle est la limite de la suite (xn) ?

18 Soit la suite (un) dé�nie pour tout entier naturel n par

un =
(2n)!

22n (n!)2
:

Etudier le sens de variation de (un).

En déduire que (un) est convergente.
19 Soit la suite (un) dé�nie par u0 = �2 et pour tout entier naturel n

un+1 =
2un
3� un

.

On veut étudier cette suite de plusieurs façons.

1. Première méthode
a. Montrer que (un) est majorée par 0.
b. Montrer que cette suite est convergente et calculer sa limite.
2. Deuxième méthode
On considère la suite auxiliaire (vn) dé�nie pour tout entier naturel n par vn =

un
1� un

.
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a. Démontrer que (vn) est une suite géométrique et préciser sa raison.
b. Calculer la limite de (vn) et en déduire celle de (un).
3. Troisième méthode
a. Trouver un réel k 2 ]0; 1[ tel que pour tout entier naturel n : jun+1j � k � junj.
b. Retrouver le résultat des questions précédentes.

20 Soit la suite (vn) dé�nie pour n � 1 par vn =
nP
k=1

1

k3
et la suite (wn) dé�nie pour n � 1

par wn = vn +
1

n2
.

1. Etudier le sens de variation des suites (vn) et (wn).
En déduire que la suite (vn) est convergente. Soit l sa limite. Donner une majoration de

jvn � lj et de jwn � lj en fonction de n.
2. Donner un rang à partir duquel vn et wn sont des valeurs approchées par défaut et par

excès de l avec une précision de 10�5.

21 1. Montrer que pour tout pour tout entier naturel n supérieur ou égal à 4 on a n! � n2.

En déduire la nature de la série
X
n�0

1

n!
.

2. Montrer que pour tout entier naturel n on a :

e = 1 +
1

1!
+
1

2!
+ : : :+

1

n!
+
e

n!

Z 1

0

une�udu.

En déduire la valeur de
+1X
n=0

1

n!
.

22 Préciser la nature des séries suivantes :

a.
X
n�1

r
n+ 1

n
; b.

X
n�2

1

n3 � n ; c.
X
n�1

(�1)n

(2n+ 1) (2n+ 3)
; d.

X
n�1

p
1 +

p
2 + : : :+

p
n

n�
où

� 2 R (montrer que pour tout entier naturel k on a
p
k �

Z k+1

k

p
xdx �

p
k + 1 et en déduire

un équivalent de la suite
p
1 +

p
2 + : : : +

p
n); e.

X
n�1

arctann

n2
; f.

X
n�1

tan
�
2
n

�
� sin

�
1
n

�
; g.

X
n�1

(1 + n) sinn

n2
p
n

; h.
X
n�1

(�1)n
p
n

en
(indication : trouver la limite de

n2
p
n

en
.

23 1. Montrer que pour tout entier naturel k on a

p
k �

Z k+1

k

p
xdx �

p
k + 1

En déduire un équivalent de
p
1 +

p
2 + : : :+

p
n.

2. Etudier la nature de la série
X
n�1

p
1 +

p
2 + : : :+

p
n

n�
suivant les valeurs du réel �.

24 Soit la série
X
n�1

ln
�
2� e� 1

n

�
.
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A l�aide d�un developpement limité de e�
1
n donner la nature de la série

X
n�1

ln
�
2� e� 1

n

�
.

25 On considère la fonction f dé�nie sur [0; 1] par f (x) = 2xex.

1. Montrer que f réalise une bijection de [0; 1] dans un ensemble à préciser. Donner des
propriétés de f�1, bijection réciproque de f , et en donner le tableau de variation.

2. Montrer qu�il existe un unique réel � de l�intervalle ]0; 1[ tel que

�e� = 1.

On dé�nit la suite (un) par u0 = � et un+1 = f�1 (un) pour tout entier naturel n.

3. Montrer que : 8n 2 N; un 2 ]0; 1[.
4. Montrer que pour tout réel x de [0; 1] on a f (x) � x � 0, et que l�égalité ne se produit

que pour x = 0.

Que peut-on en déduire sur le sens de variation de (un) ?

5. En déduire que la suite (un) est convergente puis qu�elle converge vers 0.
6. Donner un équivalent de f en 0 puis un équivalent de f�1 en 0.
26 On considère la suite (un) dé�nie par u0 = 1 et pour tout entier naturel n par :

un+1 =
un

u2n + un + 1
:

Soit f la fonction dé�nie par f (x) =
x

x2 + x+ 1
.

1. Montrer que f est croissante sur [0; 1].
Représenter graphiquement les premiers termes de cette suite.

Démontrer que la suite (un) est convergente et calculer sa limite.

2. Montrer que pour tout entier naturel p non nul on a : f
�
1

p

�
� 1

p+ 1
.

3. Montrer que pour tout entier naturel n on a : 0 < un �
1

n+ 1
.

Retrouver la limite de la suite (un).

On veut trouver dans les questions suivantes un équivalent de (un).

4. En remarquant que pour tout entier naturel n on a :
1

un+1
= un + 1 +

1

un
, montrer par

récurrence que pour tout entier n supérieur ou égal à 1 on a :

1

un
� n+ 1 +

nX
k=1

1

k
.

5. En utilisant l�inégalité
1

k
�
Z k

k�1

dx

x
valable pour tout entier k supérieur ou égal à 2

montrer que :

8n � 2; 1
un
� n+ 2 + lnn.

Déduire des questions précédentes que la suite (un) est équivalente à
1

n
.

Correction :
1 2. a/ Soit la propriété P (n) : "un > 0".
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Comme u0 2 ]0; 1[ la propriété P (0) est vraie. Supposons qu�elle soit vraie à un certain
rang n. On a un+1 =

u2n�un+1
un

; le trinôme x2�x+1 étant toujours > 0 on obtient, avec un > 0,
un+1 > 0 donc P (n+ 1) est vraie.
Conclusion : 8n 2 N; un > 0.
Pour tout entier naturel n � 0 on a un+1�1 = u2n�2un+1

un
= (un�1)2

un
� 0 donc 8n 2 N; un � 1 .

b/ Pour tout entier naturel n on a : un+1 � un = 1
un
� 1 = 1�un

un
� 0 d�après 2. a/ donc la

suite (un) est décroissante. Comme elle est minorée par 1 elle est convergente. Soit l sa limite.
En passant l�égalité un+1 = un + 1

un
� 1 à la limite on obtient l = l + 1

l
� 1 soit l = 1.

Conclusion : la suite (un) converge vers 1.
3. a/ Soit la propriété P (n) : " jun � 1j � ju0 � 1j2

n

".

Pour n = 0 elle s�écrit : ju0 � 1j � ju0 � 1j2
0

soit ju0 � 1j � ju0 � 1j2
0

donc P (0) est vraie.

Supposons P (n) pour un certain entier n. On a jun+1 � 1j = jun�1j2
un

; d�après l�hypothèse de

récurrence on a jun � 1j � ju0 � 1j2
n

donc jun � 1j2 �
�
ju0 � 1j2

n
�2
= ju0 � 1j2

n+1

et un � 1

donc 0 < 1
un
� 1 d�où jun�1j2

un
� ju0 � 1j2

n+1

. On a donc jun+1 � 1j � ju0 � 1j2
n+1

et la propriété
P (n) est vraie pour tout entier naturel n.
Posons k = ju0 � 1j 2 ]0; 1[ (car u0 2 ]1; 2[). On a ju0 � 1j2

n

= e2
n lnju0�1j; or 2n ln ju0 � 1j !

�1 (car ln ju0 � 1j < 0) donc ju0 � 1j2
n

= e2
n lnju0�1j ! 0. L�encadrement 0 � jun � 1j �

ju0 � 1j2
n

et le théorème de l�étau montrent que jun � 1j ! 0 soit lim
n!+1

un = 1 .

b/ D�après la question précédente on a jun � 1j �
�
1
2

�2n
pour tout entier naturel n. Pour

avoir jun � 1j < 10�10 il su¢ t d�avoir
�
1
2

�2n
< 10�10 ce qui équivaut à 22

n
> 1010 soit n > 6 (à

la calculatrice).

2 1. Par une récurrence évidente on a : 8n 2 N; un > 0.

On a pour tout entier naturel n,
un+1
un

=
1

(1 + un)
2 < 1 (car 1 + un � 1) donc la suite (un)

est décroissante.
De plus elle est minorée (par 0) donc (un) est convergente.

Posons l = limun. En passant à la limite dans un+1 =
un

(1 + un)
2 on obtient l =

l

(1 + l)2
ce

qui équivaut à l = l (1 + l)2ou encore à l2 (2 + l) = 0 soit l = 0 ou l = �2. Comme la suite (un)
est à termes positifs on a l � 0 donc l = 0 .

2. On a pour tout entier naturel non nul n, vn =
(1 + un�1)

2

un�1
� 1

un�1
=
2un�1 + u

2
n�1

un�1
=

2 + un�1. Comme (un) tend vers 0 il en est de même de (un�1) donc lim vn = 2 .

3. Comme 1
xn
� 1

xn�1
�! 2 alors 1

n

�
1
xn

�
�! 2 (d�après le rappel) c�est à dire nxn

2
�! 1 ou

encore xn
2=n

�! 1 ce qui équivaut à xn s
1

2n
.

La suite (xn) tend donc vers 0 "comme la suite 1
2n
", c�est à dire lentement. Par exemple

on a x100 ' 0; 0049011, donc x100 est une valeur approchée 0 à 5:10�3 près alors que u7 est une
valeur approchée de 1 à 10�10 près.

3 1. fn est continue et dérivable sur D = R� f0;�1; : : : ;�2ng et pour tout x 2 D :

f
0

n (x) = �
1

x2
� 1

(x+ 1)2
� : : :� 1

(x+ 2n)2
,

12



donc f
0
n (x) < 0 pour tout x 2 D.

Sur ]�1;�2n[ fn est continue, strictement décroissante et lim
x!�1

fn (x) = �a et lim
x!�2n

fn (x) =

�1, donc fn induit une bijection de ]�1;�2n[ sur ]�1;�a[. Comme 0 2 ]�1;�a[,
l�équation fn (x) = 0 a une unique solution sur ]�1;�2n[.
De même fn induit une bijection de chacun des intervalles ]�2n;�2n+ 1[ ; ]�2n+ 1;�2n+ 2[ ; : : : ]�1; 0[

sur R donc l�équation fn (x) = 0 a une unique solution sur chacun de ces intervalles. En�n fn
induit une bijection de ]0;+1[ sur ]�a;+1[, donc l�équation fn (x) = 0 a une unique solution
sur ]0;+1[.
En dé�nitive l�équation fn (x) = 0 a 2n+ 1 solutions sur R.
2. D�après 1/ l�équation fn (x) = 0 a une unique solution sur ]0;+1[.
3. Posons ' (x) = ln (x+ 1) � ln (x) � 1

x+1
. ' est dérivable sur R�+ et 8x > 0; '0 (x) =

1
x+1

� 1
x
+ 1

(x+1)2
= x(x+1)�(x+1)2+x

x(x+1)2
, soit '0 (x) = x(x+1)�(x+1)2+x

x(x+1)2
= � 1

x(x+1)2
< 0 pour x < 0. '

est donc strictement décroissante sur R�+, et comme lim
x!+1

' (x) = 0 (car ' (x) = ln
�
x+1
x

�
� 1
x+1
)

alors : 8x > 0; ' (x) > 0, soit 1
x+1

< ln (x+ 1)� ln (x).
On démontrerait de même que 8x > 0, ln (x+ 1)� ln (x) < 1

x
.

On a donc les encadrements : 1
x+1

< ln (x+ 1)� ln (x) < 1
x
, 1
x+2

< ln (x+ 2)� ln (x+ 1) <
1
x+1
,. . . , 1

x+2n
< ln (x+ 2n) � ln (x+ 2n� 1) < 1

x+2n�1 (en remplaçant x successivement par
x+ 1; : : : ; x+ 2n� 1). En ajoutant membres à membres ces encadrements :

fn (x)�
1

x
+ a < ln (x+ 2n)� lnx < fn (x)�

1

x+ 2n
+ a, soit :

fn (x)�
1

x
+ a < ln

�
1 +

2n

x

�
< fn (x)�

1

x+ 2n
+ a.

En remplaçant x par xn (> 0 =)) dans l�encadrement on obtient, vu que fn (xn) = 0 :

a� 1

xn
< ln

�
1 +

2n

xn

�
< a� 1

xn + 2n
:

4. De la deuxième inégalité de l�encadrement précédent on déduit : ln
�
1 +

2n

xn

�
< a, et

prenant l�exponetielle (strictement croissante sur R) on obtient : 1+
2n

xn
< ea, soit

2n

xn
< ea�1.

Les deux membres étant strictement positif, en prenant l�inverse il vient : xn
2n
> 1

ea�1 , soit

8n 2 N�;xn > 2n
ea�1 .

On a lim
n!+1

2n
ea�1 = +1, donc, d�après le théorème de comparaison : lim

n!+1
xn = +1 .

5. Comme les suites a� 1

xn
et

1

xn + 2n
convergent vers 0 (car lim

n!+1
xn = +1), on a, d�après

l�encadrement a � 1

xn
< ln

�
1 +

2n

xn

�
< a � 1

xn + 2n
, lim
n!+1

ln

�
1 +

2n

xn

�
= a (théorème de

l�étau).

On a donc lim
n!+1

�
1 +

2n

xn

�
= ea, soit lim

n!+1
ln
2n

xn
= ea�1 ou lim

n!+1
xn
2n

ea�1
= 1 soit xn � 2n

ea�1 .

4 1. La fonction f est dérivable sur [0; 1] (produit de fonctions dérivables) et :

8x 2 [0; 1] ; f 0 (x) = 2ex (x+ 1) .
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On a donc : 8x 2 [0; 1] ; f 0 (x) > 0 donc f est strictement croissante sur [0; 1] :f étant
continue c�est donc une bijection de [0; 1] sur [f (0) ; f (1)] = [0; 2e].

La bijection réciproque f�1 de f est une bijection de [0; 2e] dans [0; 1], continue, strictement
croissante.

2. L�équation xex = 1 est équivalente à f (x) = 2. Comme 2 2 [0; 2e], cette équation a une
unique solution � dans [0; 1] (l�antécédent de 2 par f).

Comme f (0) et f (1) sont di¤érents de 2 on a � 2 ]0; 1[.
3. Récurrence sur n. Soit la propriété P (n) : "0 < un < 1".
Elle est vraie pour n = 0 d�après 2/.

Supposons Pn vraie pour un certain entier n : 0 < un < 1. La fonction f�1 étant strictement
croissante sur [0; 2e] on a : f�1 (0) < f�1 (un) < f�1 (1). Or f�1 (0) = 0 et f�1 (1) 2 ]0; 1[ (voir
TV de f�1) donc 0 < un+1 < 1 et la propriété est vraie au rang n+ 1.

Conclusion : la propriété Pn est vraie pour tout entier naturel n.

4. a. On a : 8x 2 [0; 1] ; f (x)� x = x (2ex � 1). Pour x � 0 on a ex � 1 donc 2ex � 1 > 0
d�où f (x)� x � 0 pour tout x 2 [0; 1].
On a f (x) � x = 0 ssi x (2ex � 1) = 0. Comme 2ex � 1 6= 0 sur [0; 1] c�est équivalent à

x = 0.

En remplaçant x par un dans l�inégalité f (x) � x (possible car un 2 [0; 1]) on obtient
f (un) � un, et en prenant l�image par f�1 (croissante) il vient un � f�1 (un) = un+1 . La suite
(un) est décroissante.
4. b.Comme elle décroissante et minorée (par 0) elle est donc convergente.
Sa limite l véri�e f�1 (l) = l (car f�1 continue en l) soit f (l) = l en composant par f , donc

l = 0 d�après la question précédente.

5. a. Par dé�nition de un on a pour tout entier naturel n, f (un+1) = un soit 2un+1eun+1 =
un, ou un+1 =

1
2
une

�un+1 .

5. b. Soit Pn : un = e�Sn

2n
. P0 est vraie car u0 = � et �e� = 1 soit � = e��.

Supposons Pn vraie pour un certain entier n on a : un+1 = 1
2
une

�un+1, soit un+1 =
1
2
e�Sn

2n
e�un+1 (hypothèse de récurrence) ou : un+1 = e�Sn�un+1

2n+1
= e�Sn+1

2n+1
et Pn+1 est vraie.

Conclusion : la propriété Pn est vraie pour tout entier naturel n.

5. c. Comme pour tout entier naturel n : un+1 � 0 on a e�un+1 � 1 donc 1
2
une

�un+1 � 1
2
un,

soit un+1 � 1
2
un.

Par une récurrence évidente on en déduit que : 8n 2 N; un �
�
1
2

�n
.

En sommant les inégalités uk �
�
1
2

�k
pour k = 1; 2; : : : ; n on obtient : Sn =

nX
k=0

uk �
nX
k=0

�
1
2k

�
, soit Sn � 1�(1=2)n+1

1�1=2 (somme des termes d�une suite géométrique de raison 1=2), donc

Sn � 2�
�
1
2

�n
.

On en déduit : 8n 2 N; Sn � 2. La suite (Sn) est donc majorée. De plus elle est croissante
(Sn+1 � Sn = un � 0) donc la suite (Sn) est convergente.
Pour tout entier naturel n on a � = S0 � Sn � 2, et en passant à la limite (n �! +1) il

vient � � L � 2 .
5. d. On a un = e�Sn

2n
� e�L

2n
(car e�Sn converge vers e�L).
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5 1. L�application 'n est continue sur R+ (fonction polynôme) strictement croissante (car
'
0
n (x) = nx

n�1+ : : :+1 > 0). De plus 'n (0) = �1 et lim
x!+1

'n (x) = +1. D�après le théorème
de la bijection 'n est une bijection de R+ sur [�1;+1[ donc l�équation 'n (x) = 0 a une unique
solution xn sur R+ (l�antécédent de 0 2 [�1;+1[ par 'n).
Comme pour tout entier n, 'n (0) < 0 et 'n (1) = n� 1 � 0 on a xn 2 ]0; 1].
On a immédiatement x1 = 1 . x2 est la solution positive de l�équation x2 + x� 1 = 0 soit

x2 =
�1+

p
5

2
.

2. Pour x 2 ]0; 1] et n 2 N�, on a 'n (x) � 'n+1 (x) = xn+1 � xn = xn (x� 1) � 0, soit
fn (x) � fn+1 (x).
En remplaçant x par xn (2 ]0; 1]) on en déduit que 0 = 'n (xn) � 'n+1 (xn) ou encore

'n+1 (xn+1) � 'n+1 (xn) (car 'n+1 (xn+1) = 0). Comme la fonction 'n+1 est strictement crois-
sante on en déduit que xn+1 � xn donc la suite (xn) est décroissante.
Comme elle est minorée par 0 alors elle est convergente.
3. Comme la suite (xn) est décroissante on a 0 � xn � x2 pour n � 2 donc : 0 � xnn � xn2 .

Or x2 2 [0; 1[ donc xn2 �!
n!+1

0 et (xnn) tend vers 0 d�après le théorème de l�étau.

4. Pour n 2 N�, xn est solution de l�équation 'n (x) = 0 donc on a xnn+xn�1n + : : :+xn = 1.
Or xnn + x

n�1
n + : : : + xn =

xn�xn+1n

1�xn si n � 2 (somme des termes d�une suite géométrique de

raison xn) donc xn�xn+1n

1�xn = 1 soit xn (1� xnn) = 1� xn (cette relation est valable aussi si n = 1
car x1 = 1).
Soit l la limite de la suite (xn). En faisant tendre n vers l�in�ni dans la relation précédente

il vient (d�après 3/) : l = 1� l soit l = lim xn = 1
2
.

5. D�après 4/ on a xn�xn+1n = 1�xn soit xn+1n = 2xn�1 pour n � 1. Comme xn = 1
2
(1 + "n)

il vient 1
2n+1

(1 + "n)
n+1 = "n ou 8n 2 N�; (1 + "n)n+1 = 2n+1"n .

En prenant le ln des deux membres : (n+ 1) ln (1 + "n) = (n+ 1) ln 2 + ln "n soit, en
multipliant par "n, 8n 2 N�; (n+ 1) "n ln (1 + "n) = (n+ 1) "n ln 2 + "n ln "n .
6. D�après la relation précédente on a (n+ 1) "n [ln 2� ln (1 + "n)] = �"n ln "n. Comme

"n �! 0 on a "n ln "n �! 0. De plus ln 2� ln (1 + "n) �! ln 2 donc (n+ 1) "n �! 0 .

On écrit (1 + "n)
n+1 = e(n+1) ln(1+"n). On a (n+ 1) ln (1 + "n) �

n!+1
(n+ 1) "n (car ln (1 + "n) �

0

"n puisque "n tend vers 0) donc (n+ 1) ln (1 + "n) �! 0. Il s�ensuit que lim
n!+1

(1 + "n)
n+1 = 1 .

7. D�après 7/ (1 + "n)
n+1 �

n!+1
1 et (1 + "n)

n+1 = 2n+1"n (5/) donc "n �
n!+1

1
2n+1

.

Il existe donc une suite "
0
n tendant vers 0 telle que "n =

1
2n+1

�
1 + "

0
n

�
pour n assez grand,

soit xn = 1
2
(1 + "n) =

1
2

�
1 + 1

2n+1

�
1 + "

0
n

��
ou xn =

1
2

�
1 + 1

2n+1
+ o

�
1

2n+1

��
.

8. a. La fonction f est continue, dérivable sur I =
�
1
2
; 1
�
et f 0 (x) = � 1

(1+x)2
< 0 sur

cet intervalle, donc f est strictement décroissante sur I et donc f
��
1
2
; 1
��
=
�
f (1) ; f

�
1
2

��
=�

1
2
; 2
3

�
�
�
1
2
; 1
�
.

b. Par une récurrence évidente on a, d�après 8/ a/ : 8p 2 N; up 2
�
1
2
; 1
�
.

� étant solution de l�équation '2 (x) = 0 on a �
2 + �� 1 = 0 soit � = 1

1+�
= f (�).

On écrit alors, pour tout entier natuel p, jup+1 � �j = jf (up)� f (�)j =
��� 1
1+up

� 1
1+�

���, soit
jup+1 � �j = j��upj

(1+up)(1+�)
. Or up � 1

2
(8/ a/) donc 1+up � 3

2
et 1+� � 1 donc (1 + up) (1 + �) �

3
2
soit 1

(1+up)(1+�)
� 2

3
. On a donc : 8p 2 N; jup+1 � �j � 2

3
jup � �j .
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c. Par une récurrence facile (ou un procédé "en cascades") on déduit de l�inégalité précédente
que, pour tout entier naturel p, 0 � jup � �j �

�
2
3

�p ju0 � �j soit 0 � jup � �j � �23�p j1� �j.
Comme

�
2
3

�p
converge vers 0 (car 2

3
2 [0; 1[) on a lim

p!+1
jup � �j = 0 soit lim

p!+1
up = � .

6 Partie 1.
1. Pour t réel et k entier tels que 0 < k � t � k + 1 on a 0 < 1

k+1
� 1

t
� 1

k
; en intégrant

entre k et k + 1 il vient
R k+1
k

dt
k+1

�
R k+1
k

dt
t
�
R k+1
k

dt
k
, soit 1

k+1
�
R k+1
k

dt
t
� 1

k
et en particulier

: 8k 2 N�; 1
k+1

�
R k+1
k

dt
t
.

2. En sommant les inégalités précédentes pour k = 1 à n�1 on obtient yn�1 �
Z n

1

dt
f
= lnn

donc on a yn � ln (n) + 1 pour n 2 N� .
Partie 2.
3. D�après le graphique il semble que la suite (xn) soit croissante et tende vers +1.
4. Par une récurrence aisée on a xn > 0 pour tout entier naturel n d�où xn+1�xn = 1

xn
> 0.

La suite (xn) est donc strictement croissante. Elle a donc une limite l 2 R [ f+1g.
Si l 2 R on aurait, en passant l�égalité xn+1 = xn + 1

xn
à la limite : l = l + 1

l
, soit 1

l
= 0 ce

qui est impossible. On a donc limxn = +1 .

5. Pour tout entier naturel k on a x2k+1 � x2k =
�
xk +

1
xk

�2
� x2k = 2 + 1

x2k
.

En sommant ces égalités de k = 0 à n�1 il vient, après simpli�cations : x2n�x20 = 2n+
n�1X
k=0

1
x2k
.

Comme x0 = 1 on a donc : 8n 2 N�; x2n = 2n+ 1 +
n�1X
k=0

1
x2k
.

6. D�après l�égalité précédente on a : 8n 2 N�; x2n � 2n, donc xn �
p
2n. Comme la suite�p

2n
�
tend vers +1 on a, d�après le théorème de comparaison limxn = +1.

7. Comme x2k � 2k pour k � 1, on a 1
x2k
� 1

2k
et en sommant ces inégalités de k = 1 à n�1 on

obtient
n�1X
k=1

1
x2k
�

n�1X
k=1

1
2k
= 1

2

n�1X
k=1

1
k
� 1

2
(ln (n� 1) + 1) (d�après 2/) soit

n�1X
k=1

1
x2k
� 1

2
ln (n� 1)+ 1

2
.

En ajoutant 1 aux deux membres :
n�1X
k=0

1
x2k
� 1

2
ln (n� 1) + 3

2
.

Il résulte alors de la question 5/ que : 8n 2 N�; x2n � 2n+
5

2
+
ln (n� 1)

2
:

8. D�après 5/ on a 8n 2 N�; x2n � 2n + 1 et d�après la question précédente on déduite
l�encadrement :

8n 2 N�; 2n+ 1 � x2n � 2n+
5

2
+
ln (n� 1)

2
.

En divisant par 2n (> 0) et en prenant la racine carrée il vient : 8n 2 N�;
q
1 + 1

2n
�

xnp
2n
�
q
1 + 5

4n
+ ln(n�1)

4n
. Comme ln(n�1)

4n
�!
n!+1

0 on obtient, d�après le théorème de l�étau :

xnp
2n

�!
n!+1

1 c�est à dire que (xn) �
p
2n .

Partie 3.
9. Soit la propriété Pn : un � 1. P0 est vraie car u0 = 3=2.
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Si Pn est vraie pour un entier n �xé, on a un+1 � 1 = un + 1
un
� 2 = u2n�2un+1

un
= (un�1)2

un
� 1

(car un > 0), donc un+1 � 1 et Pn+1 est vraie.
D�après le principe de récurrence la propriété Pn est vraie pour tout entier naturel n.
D�autre part on a : 8n 2 N; un+1�un = 1

un
�1 = 1�un

un
� 0 donc la suite (un) est décroissante.

De plus elle est minorée par 1 donc elle est convergente et sa limite l est supérieur ou égale à
1. En passant à la limite dans un+1 = un+ 1

un
�1 on obtient : l = l+ 1

l
�1 soit l = limun = 1 .

10. D�après 9/ on a, pour tout entier naturel n, un+1� 1 = (un�1)2
un

� (un � 1)2, car un � 1.

Soit la propriété Pn : un � jun � 1j �
1

22n
. P0 est vraie car ju0 � 1j = 1

2
et

1

220
= 1

2
.

Si Pn est vraie pour un entier n �xé, on a jun+1 � 1j � (un � 1)2 et d�après l�hypothèse de

récurrence on a (un � 1)2 �
�
1

22n

�2
= 1

(22n)
2 =

1
22n�2

= 1

22n+1
donc jun+1 � 1j � 1

22n+1
et la

propriété est vraie au rang n+ 1.
D�après le principe de récurrence la propriété Pn est vraie pour tout entier naturel n.

Pour avoir jun � 1j < 10�6 il su¢ t donc d�avoir
1

22n
< 10�6 soit 22

n
> 106. A la calculatrice

on trouve n = 5. Il semble donc que la suite (un) converge rapidement vers 1.

11. D�après 10/ on a, pour tout entier naturel n, jun�1j
an

� 1

an22n
. On a an22

n
= en ln a+2

n ln 2

et n ln a+2n ln 2 = 2n
�
ln 2 + n ln a

2n

�
�!
n!+1

+1 car n
2n
�! 0 donc an22

n �! +1 et jun�1j
an

�! 0

On a donc jun � 1j = o (an) quand n tend vers +1.

7 1. Par une récurrence immédiate on voit que xn � 0 pour tout entier naturel n.

Pour n 2 N on a : xn+1 � 1 = 1 =
x2n � 2xn + 1
2 (xn + 1)

=
(xn � 1)2

2 (xn + 1)
� 0. On a donc :

8n 2 N�; xn � 1 .

Remarque : il est inutile de raisonner par récurrence.
2. Etudions le sens de variation de (xn). Pour tout entier naturel n on a :

xn+1 � xn =
x2n + 3

2 (xn + 1)
� xn

=
�x2n � 2xn + 3
2 (xn + 1)

.

Les racines du trinôme �x2 � 2x+ 3 sont �3 et 1 donc ce trinôme est négatif pour x � 1.
Comme xn � 1 pour n � 1 on a donc �x2n � 2xn + 3 � 0 soit xn+1 � xn � 0 pour n � 1.
La suite (xn) est donc décroissante à partir de n = 1.
Comme elle est minorée par 1 elle est donc convergente.

Soit l sa limite. En passant à la limite dans la relation xn+1 =
x2n + 3

2 (xn + 1)
on obtient l = l2+3

2(l+1)

(la suite (xn+1) tend vers l car c�est une suite extraite de (xn)). On obtient 2l2 + 2l = l2 + 3
soit l2 + 2l � 3 = 0. On a donc l = �3 ou l = 1. De plus xn � 0 pour tout n et par passage à
la limite on a l � 0. Finalement on a l = 1 .

3. La calcul du 1/ donne, pour n � 1, jxn+1 � 1j =
����� (xn � 1)22 (xn + 1)

����� = xn � 1
2 (xn + 1)

: jxn � 1j (car

xn � 1). De plus 0 � xn � 1 � xn et 2 (xn + 1) � 2xn donc 0 < 1
2(xn+1)

� 1
2xn
.
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En multipliant membres à membres on obtient : 0 � xn � 1
2 (xn + 1)

� 1
2
.

On a donc : jxn+1 � 1j � 1
2
jxn � 1j pour n � 1 (cet encadrement est vrai aussi si n = 0).

Par une récurrence facile (ou un raisonnement "en cascade") on en déduit que :

8n 2 N; jxn � 1j �
�
1

2

�n
.

Comme
�
1
2

�n �! 0 (suite géométrique de raison 1
2
2 ]�1; 1[) on a, d�après le théorème de

l�étau, jxn � 1j �! 0, soit xn �! 0 .
8 1. La fonction fn est continue et dérivable sur R (fonction polynôme) et pour tout réel

x, f
0
n (x) = nx

n�1 � n = n (xn�1 � 1) < 0 pour x 2 [0; 1[. D�après le théorème de la bijection
fn induit une bijection de [0; 1] sur [fn (1) ; fn (0)] = [2� n; 1]. Comme 0 2 [2� n; 1] l�équation
fn (x) = 0 a une unique solution xn sur l�intervalle [0; 1].

Pour tout n � 2 on a 0 < xn � 1.
2. Pour tout x 2 [0; 1] et n � 2 on a fn+1 (x) � fn (x) = xn+1 � xn � x = xn (x� 1) � x.

Comme 0 � x � 1, on a x� 1 � 0 donc fn+1 (x)� fn (x) � 0 pour x 2 [0; 1] et n � 2.
En remplaçant x par xn il vient : fn+1 (xn) � fn (xn), soit fn+1 (xn) � 0 (car fn (xn) = 0)

ou encore fn+1 (xn) � fn+1 (xn+1). La fonction fn+1 étant strictement décroissante sur [0; 1] il
s�ensuit que xn � xn+1 pour n � 2 donc que la suite (xn)n�2 est décroissante. Comme elle est
minorée par 0 elle est donc convergente.

3. Pour n � 2 la relation fn (xn) = 0 s�écrit xnn � nxn + 1 = 0 soit xn =
xnn+1
n
. Comme

xn � 1 on a xnn � 1 donc
xnn+1
n
� 2

n
. On a donc : 8n 2 N; n � 2; 0 < xn � 2

n
.

4. D�après l�encadrement précédent et le théorème de l�étau on a : limxn = 0.

D�après 3/ on a nxn = 1+xnn pour n � 2. Or xnn = en lnxn et n lnxn �! �1 (car xn �! 0)

donc xnn �! 0. On a donc nxn �! 1 soit xn
1=n

�! 1 ou encore xn s 1
n
.

5. a. Pour n � 2 on a nyn = nxn� 1 = xnn �! 0 d�après 4/ et nyn = nxnn = e
lnn+n lnxn. Or

lnn+ n lnxn = n
�
lnn
n
+ lnxn

�
�! �1 (car lnn

n
�! 0 et lnxn �! �1) donc nyn �! 0 .

De même, pour n � 2, n2yn = e2 lnn+n lnxn et 2 lnn + n lnxn = n
�
2 lnn
n
+ lnxn

�
�! �1

donc n2yn �! 0 .

b. Pour n � 2, on a yn = 1
n
xnn =

1
n
en lnxn = 1

n
en ln(yn+

1
n) = 1

n
en ln(nyn+1)�n lnn = 1

nn+1
en ln(1+nyn).

Quand n tend vers +1 on a ln (1 + nyn) s nyn (car nyn �! 0) donc n ln (1 + nyn) s n2yn.
Comme n2yn �! 0 on a n ln (1 + nyn) �! 0 donc en ln(1+nyn) �! 1 soit yn s 1

nn+1
.

C�est équivalent à l�existence d�une suite ("n) convergeant vers 0 telle que yn = 1
nn+1

(1 + "n),

soit xn� 1
n
= 1

nn+1
(1 + "n), ou encore xn = 1

n
+ 1
nn+1

+ "n
nn+1

. On a donc xn = 1
n
+ 1

nn+1
+ o

�
1

nn+1

�
.

9 1. Pour tout entier naturel n on a :

un+1 � vn+1 =
un + vn
2

� 2unvn
un + vn

=
(un + vn)

2 � 4unvn
2 (un + vn)

=
(un � vn)2

2 (un + vn)
:

Montrons par récurrence la propriété Pn : "un > vn > 0".

La propriété est vraie au rang n = 0.

Si Pn est vraie pour un entier n �xé, alors un+1 = un+vn
2

> 0 et vn+1 = 2unvn
un+vn

> 0. Le calcul
précédent donne alors un+1 � vn+1 > 0 donc Pn+1 est vraie.
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D�après le principe de récurrence la propriété Pn est vraie pour tout entier naturel n :

8n 2 N; un > vn > 0 .

2. Pour tout entier naturel n on a : un+1�un =
un + vn
2

�un =
vn � un
2

< 0 d�après 1/ donc

la suite (un) est décroissante. De même on a vn+1�vn =
2unvn
un + vn

�vn =
2unvn � vn (un + vn)

un + vn
=

unvn � v2n
un + vn

, soit vn+1 � vn =
vn (un � vn)
un + vn

> 0 d�après 1/ donc la suite (vn) est croissante.

D�après 1/ on a donc, (un) étant décroissante te (vn) croissante : 8n 2 N, 0 < v0 < vn <
un < u0. La suite (un) est décroissante et minorée (par 0 ou v0) donc elle converge. De même
la suite (vn) est croissante et majorée (par u0) donc elle converge.
Posons l = lim

n!+1
un et l0 = lim

n!+1
vn. En passant à la limite dans l�égalité un+1 = un+vn

2
il

vient (vu que (un+1) tend vers l) : l = l+l0

2
ce qui équivaut à 2l = l + l0 soit l = l0.

Remarque : les suites (un) et (vn) sont donc adjacentes.

3. On remarque que pour tout entier naturel n : un+1vn+1 =
un + vn
2

:
2unvn
un + vn

= unvn. La

suite (unvn) est donc constante et on a : 8n 2 N; unvn = u0v0 = ab:
En passant à la limite on obtient : l2 = ab et comme l � 0 (car 8n; un � 0) on a l =

p
ab .

4. Pour tout entier naturel n on a un + vn > vn > v0 = 1 donc 0 <
1

un + vn
� 1.

On a donc (un�vn)
2

2(un+vn)
� (un�vn)2

2
soit, d�après le calcul du 1/ : 8n 2 N; jun+1 � vn+1j �

(un � vn)2

2
.

On montre par récurrence la propriété Pn : " jun � vnj �
1

22n�1
:".

La propriété est vraie au rang n = 0 car ju0 � v0j = 1 et
1

220�1
=
1

20
= 1.

Si Pn est vraie pour un entier n �xé, alors jun � vnj �
1

22n�1
et en élevant au carré les deux

membres il vient : (un � vn)2 �
�

1

22n�1

�2
=

1

22(2n�1)
=

1

22n+1�2
.

On a alors : jun+1 � vn+1j �
(un � vn)2

2
� 1

2
:

1

22n+1�2
=

1

22n+1�1
, donc la propriété Pn+1 est

vraie.
D�après le principe de récurrence la propriété Pn est vraie pour tout entier naturel n.
Du fait de l�encadrement vn � l � un on a jun � lj � jun � vnj et jvn � lj � jun � vnj, donc

pour tout entier naturel n on a jun � lj �
1

22n�1
ainsi que jvn � lj �

1

22n�1
.

Pour avoir jun � lj � 10�10 (ou jun � lj � 10�10) il su¢ t donc d�avoir
1

22n�1
< 10�10.

La calculatrice donne : n � 6.
Les réels u6 et v6 sont donc des valeurs approchées par excès et par défaut respectivement

de
p
2 à 10�10 près.
10 Question préliminaire : on peut raisonner par récurrence ou remarquer que la suite

nP
k=1

1

2k
est la somme des termes consécutifs de la suite géométrique

�
1

2

�k
de raison 1

2
donc :

nX
k=1

1

2k
=

1
2
� 1

2
: 1
2n

1� 1
2

= 2

�
1

2
� 1

2n+1

�
= 1� 1

2n
.

19



1. Raisonnons par récurrence. Soit la propriété

Pn : "8x1; x2; : : : ; xn éléments de [0; 1] ;
nY
i=1

(1� xi) � 1�
nX
i=1

xi":

Initialisation : P1 s�écrit 8x1 2 [0; 1] ; 1� x1 � 1� x1 donc P1 est vraie.
Hérédité : supposons la propriété Pn pour un entier naturel n �xé et montrons que Pn+1 est

vraie.

Soient des réels x1; x2; : : : ; xn+1 de l�intervalle [0; 1]. D�après l�hypothèse de récurrence on a
:

nY
i=1

(1� xi) � 1�
nX
i=1

xi.

En multipliant les deux membres de l�inégalité par le rées (positif) 1� xn+1 il vient :

nY
i=1

(1� xi) (1� xn+1) �
 
1�

nX
i=1

xi

!
(1� xn+1) , soit :

n+1Y
i=1

(1� xi) � 1�
nX
i=1

xi � xn+1 + xn+1
nX
i=1

xi = 1�
n+1X
i=1

xi + xn+1

nX
i=1

xi.

Comme les xi sont positifs on a xn+1
nP
i=1

xi � 0 donc
n+1Q
i=1

(1� xi) � 1�
n+1P
i=1

xi donc Pn+1 est

vraie.

Conclusion : la propriété Pn étant vraie pour n = 1 et étant héréditaire elle est vraie pour
tout entier naturel non nul n.

2. Pour tout entier naturel non nul n on a :

Sn+1
Sn

= 1� 1

2n+1
< 1.

Comme la suite (Sn) est à termes strictements positifs on en déduit que (Sn) est décroissante.

De plus cette suite est minorée par 0 donc elle est convergente.

3. Pour tout entier naturel non nul n on a 1� 1

2k
2 [0; 1] donc on peut appliquer l�inégalité

de la question 1/ (avec xi = 1� 1
2i
) et on obtient :

8n 2 N�; Sn � 1�
nX
i=1

1

2i
.

Or
nX
i=1

1

2i
= 1� 1

2n
(question préliminaire) donc 1�

nP
i=1

1

2i
= 1�

�
1� 1

2n

�
=
1

2n
d�où:

8n 2 N�; Sn �
1

2n
.

4. Considérons la fonction f dé�nie par f (x) = ln (1� x)+x pour x 2 [0; 1[. f est dérivable
sur cet intervalle (somme et composée de fonctions dérivables) et : 8x 2 [0; 1[, f 0 (x) = �1

1�x+1 =
�x
1�x � 0 sur l�intervalle [0; 1[ donc f est décroissante sur cet intervalle. De plus f (0) = 0 donc
f (x) � 0 sur I soit : 8x 2 [0; 1[ ; ln (1� x) � �x .
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Pour n 2 N� on a : lnSn = ln
nQ
k=1

�
1� 1

2k

�
=

nP
k=1

ln

�
1� 1

2k

�
.

D�après 4/ on a, pour tout entier k 2 f1; : : : ; ng : ln
�
1� 1

2k

�
� � 1

2k
. En sommant ces

inégalités pour k = 1; : : : ; n il vient :
nX
k=1

ln

�
1� 1

2k

�
� �

nX
k=1

1

2k
= �1 + 1

2n
(d�après la ques-

tion préliminaire). Comme n � 1 on a 2n � 2 donc 1
2n
� 1

2
et donc lnSn =

nP
k=1

ln

�
1� 1

2k

�
�

�1 + 1
2
= �1

2
.

En prenant l�image des deux membres par la fonction exponentielle (croissante sur R) on
obtient :

Sn � e�1=2 =
1p
e
.

Autre façon : la suite (Sn) étant décroissante on a : 8n 2 N�, Sn � S1. Or S1 = 1�
1

2
=
1

2

et
1

2
< e�1=2 (car c�est équivalent à 1

4
< e�1 ou 4 > e qui est vraie) d�où Sn � e�1=2.

On a donc l�encadrement : 8n 2 N�; 1
2n
� Sn � e�1=2. En "passant l�encadrement à la

limite" on obtient : 0 � limSn � e�1=2 .

11 1. Soit la fonction 'k dé�nie sur R par ' (x) = arctanx� x+ k�. 'k est dérivable sur
R et '0k (x) = 1

1+x2
�1 = � x2

1+x2
< 0 sur R�, donc 'k est strictement décroissante sur l�intervalle�

k�; �
2
+ k�

�
. De plus 'k (k�) = arctan (k�) > 0 et 'k

�
�
2
+ k�

�
= arctan

�
�
2
+ k�

�
� �

2
< 0

(car pour tout réel x, arctanx 2
�
��
2
; �
2

�
). D�après le théorème de la bijection, l�équation

'k (x) = 0 a une unique solution xk sur l�intervalle
�
k�; �

2
+ k�

�
.

2. Pour tout k 2 N� on a arctanxk = xk � k�. Comme xk �! +1, on a arctanxk �! �
2
,

donc lim
k!+1

(xk � k�) = �
2
.

3. Pour tout k 2 N� on a : k� < xk <
�
2
+ k�, donc arctan (k�) < arctan (xk) <

arctan
�
�
2
+ k�

�
(la fonction arctan étant strictement croissante sur R). Comme arctanxk =

xk � k� on obtient arctan (k�) < xk � k� < arctan
�
�
2
+ k�

�
, donc �

2
� arctan

�
�
2
+ k�

�
<

�
2
� (xk � k�) < �

2
� arctan (k�), et compte tenu de la relation �

2
� arctan (x) = arctan

�
1
x

�
il

vient : 8k 2 N�; arctan
�

1
(k+1=2)�

�
� � k � arctan

�
1
k�

�
.

4. En divisant les 3 membres de l�encadrement précédent par arctan (1=k�) on obtient
arctan(1=(k+1=2)�)

arctan(1=k�)
� �k

arctan(1=k�)
� 1. Quand k tend vers l�in�ni le membre de gauche est équivalent

à 1=(k+1=2)�
1=k�

(car arctanx � x en 0), soit à k
k+1=2

, donc il tend vers 1. D�après le théorème de
l�étau on a donc lim �k

arctan(1=k�)
= 1, soit � k � arctan (1=k�). Or arctan (1=k�) � 1=k�, donc

� k � 1=k� .
Il existe donc une suite ("k) convergeant vers 0 telle que � k = 1=k� (1 + "k), soit � k =

1
k�
+ o

�
1
k

�
, ou encore : �

2
� (xk � k�) = 1

k�
+ o

�
1
k

�
, soit xk = k� + �

2
� 1

k�
+ o

�
1
k

�
.

5. Pour tout réel x > 0 on a f 0 (x) = 1
1+(x+k�)2

< 1
1+k2�2

, donc 8x 2 R�+; 0 < f 0 (x) � �k,

avec �k = 1
1+k2�2

2 [0; 1[.
6. On montre d�abord par récurrence sur n la propriété P (n) : "un � �k".
C�est vrai pour n = 0 (car u0 = 0 et �k � 0).
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Si P (n) est vraie pour un entier n donné on a un � �k donc f (un) � f (�k) car fk est
croissante sur R, donc un+1 � �k et la propriété P (n+ 1) est vraie donc P (n) est vraie pour
tout entier naturel n.
D�autre part écrivons : �k � un+1 = f (�k)� f (un).
La fonction f est dérivable sur R donc, d�après le théorème des accroissements �nis appliqué

à f sur l�intervalle [un; �k], il existe ck 2 ]un; �k[ tel que f (�k)� f (un) = f
0
(ck) (�k � un).

Comme f 0 (ck) � �k on en déduit que f (�k)� f (un) � �k (�k � un).
En dé�nitive on a : 8n 2 N; 0 � �k � un+1 � �k (�k � un) .
Classiquement (par récurrence ou par une "cascade") on en déduit :

8n 2 N; 0 � �k � un � �nk (�k � u0) .

Comme �k 2 [0; 1[ on a �nk �!
n�!+1

0 donc, d�après le théorème de l�étau, on a �k�un �!
n�!+1

0,

soit lim
n!+1

un = �k .

12 1. (i) Soit la propriété P (n) : " (1� �)n � 1� n�".
Initialisation : P (1) : " 1� � � 1� �" qui est vraie.
Hérédité : supposons la propriété P (n) vraie pour un entier n donné : (1� �)n � 1� n�.
Montrons que P (n+ 1) est vraie. On a : (1� �)n+1 = (1� �)n (1� �).
D�après l�hypothèse de récurrence on a (1� �)n � 1�n� donc (1� �)n (1� �) � (1� n�) (1� �)

(car 1�� > 0) soit : (1� �)n+1 � 1�n���+n�2 � 1�(n+ 1)� (car n�2 � 0). La propriété
P (n+ 1) est donc vraie.

Conclusion : d�après le principe de récurrence la propriété P (n) est vraie pour tout entier
n 2 N�.
(ii) Pour n 2 N� on étudie les variations de la fonction f dé�nie par f (x) = (1� x)n�1+nx

sur ]0; 1[.

On a f 0 (x) = �n (1� x)n�1 + n = n
�
1� (1� x)n�1

�
pour x 2 ]0; 1[.

Comme x 2 ]0; 1[ on a 0 < 1� x < 1 donc (1� x)n�1 � 1 soit f 0 (x) � 0 sur ]0; 1[.
La fonction f est donc croissante sur ]0; 1[ et comme f (0) = 0 on a f (x) � 0 sur ]0; 1[, ce

qui démontre l�inégalité.

2. Pour tout n 2 N� on a : (1+
1

n+1)
n+1

(1+ 1
n)

n =
�
1 + 1

n+1

� (1+ 1
n+1)

n

(1+ 1
n)

n =
�
1 + 1

n+1

� �1+ 1
n+1

1+ 1
n

�n
, soit :

�
1 + 1

n+1

�n+1�
1 + 1

n

�n =

�
1 +

1

n+ 1

��
n+ n

n+1

n+ 1

�n
=

�
1 +

1

n+ 1

��
n2 + 2n

(n+ 1)2

�n
.

On écrit : n2 + 2n = (n+ 1)2 � 1 d�où (1+ 1
n+1)

n+1

(1+ 1
n)

n =
�
1 + 1

n+1

� �
1� 1

(n+1)2

�n
.

3. D�après la question 1/ on a :
�
1� 1

(n+1)2

�n
� 1� n

(n+1)2
, donc, d�après 2/

�
1 + 1

n+1

�n+1�
1 + 1

n

�n �
�
1 +

1

n+ 1

��
1� n

(n+ 1)2

�
.

Or
�
1 + 1

n+1

� �
1� n

(n+1)2

�
= 1� n

(n+1)2
+ 1
n+1

� n
(n+1)3

= 1� n(n+1)�(n+1)2+n
(n+1)3

= 1+ 1
(n+1)3

> 1.
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Finalement on a 8n 2 N�; (1+
1

n+1)
n+1

(1+ 1
n)

n � 1, soit un+1
un

� 1 donc la suit (un) est croissante (car
elle est à termes strictement positifs).
4. D�après 1/ on a : 8n 2 N�;

�
1� 1

2n

�n � 1� n
2n
= 1

2
, donc 1

(1� 1
2n)

n � 2.

Il s�ensuit que 8n 2 N�; (1�
1
4n2
)
n

(1� 1
2n)

n � 2
�
1� 1

4n2

�n � 2.
Comme

�
1 + 1

2n

�n
=
(1� 1

4n2
)
n

(1� 1
2n)

n on a donc 8n 2 N�;
�
1 + 1

2n

�n � 2 .
En élevant les deux membres (positifs) au carré il vient : 8n 2 N�;

�
1 + 1

2n

�2n � 4, soit
u2n � 4.
Pour tout entier naturel non nul n on a un � u2n (car (un) est croissante) donc 8n 2

N�; un � 4.
La suite (un) est donc majorée; comme elle est croissante la suite (un) est convergente.

13 1. Pour tout réel positif ou nul on a jf (x)� xj =
����x�x(1+x2)1+x2

���� = x3

1+x2
. Comme 1+x2 � 1

on a x3

1+x2
� x3.

On a donc : 8x � 0; jf (x)� xj � x3. Ce qui s�écrit aussi 8x � 0; x� x3 � f (x) � x+ x3 .

2. Pour 1 � k � n on a 1 � k3 � n3 et en sommant de k = 1 à n on obtient n �
nX
k=1

k3 � n4,

d�où 0 �

nX
k=1

k3

n6
� 1

n2
. D�après le théorème de l�étau on a lim

nX
k=1

k3

n6
! 0 .

3. D�après 1. on a pour 1 � k � n, k
n2
�
�
k
n2

�3 � f
�
k
n2

�
� k

n2
+
�
k
n2

�3
. En sommant ces

inégalités de k = 1 à n il vient :
nX
k=1

k
n2
�

nX
k=1

�
k
n2

�3 � un � nX
k=1

k
n2
+

nX
k=1

�
k
n2

�3
. Comme

nX
k=1

k = n(n+1)
2

cet encadrement

s�écrit : n+1
2n
�

nX
k=1

k3

n6
� un � n+1

2n
+

nX
k=1

k3

n6
. D�après 2. et le théorème de l�étau on a : limun = 1

2
.

4. D�après l�encadrement précédent on a pour tout entier naturel non nul n, 1
2n
�

nX
k=1

k3

n6
�

un � 1
2
� 1

2n
+

nX
k=1

k3

n6
et en divisant par 1

2n
il vient : 1 � 2

nX
k=1

k3

n5
� 2n

�
un � 1

2

�
� 1 + 2

nX
k=1

k3

n5
.

Or

nX
k=1

k3

n5
= n2(n+1)2

4n5
! 0 (rapport des termes de plus hauts degrés) donc, d�après le théorème

de l�étau, 2n
�
un � 1

2

�
! 1 soit : un � 1

2
s 1

2n
.

14 1. En multipliant le numérateur et le déonominateur de un par 2� 4� 6� : : :� (2n)
on obtient : un =

(2n)!

[2�4�6�:::�(2n)]2 . Or 2� 4� 6� : : :� (2n) = 2
nn!, d�où un =

(2n)!

22n(n!)2
.

2. Pour tout n � 1 on a : un+1
un

= (2n+2)!

22n+2((n+1)!)2
� 22n(n!)2

(2n)!
= (2n+2)(2n+1)

4(n+1)2
= 2n+1

2(n+1)
. Comme

2n + 1 < 2n + 2, on a un+1
un

< 1. La suite (un) étant à termes strictement positifs elle est
strictement décroissante.
Comme elle est minorée par 0 elle est convergente.
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3. Pour tout n � 1 on a : vn+1
vn

=
�
un+1
un

�2
n+2
n+1

= (2n+1)2

4(n+1)2
:n+2
n+1
. Or (2n+ 1)2 (n+ 2) �

4 (n+ 1)2 (n+ 1) = �3n� 2 < 0 donc vn+1
vn

< 1. (vn) est donc décroissante, et comme elle est
minorée par 0 elle est convergente.

4. a. On a :
2nQ
k=2

�
1� 1

k

�
=

2nQ
k=2

k�1
k
= 1

2
:2
3
: : : : :2n�1

2n
= 1

2n
, après simpli�cations.

b. On a u2n =
1
4

nQ
k=2

�
1� 1

2k

�2
= 1

4

nQ
k=2

�
1� 1

2k

� �
1� 1

2k

�
. Or 1

2k
� 1

2k�1 , donc 1�
1
2k
� 1� 1

2k�1 ,

donc u2n � 1
4

nQ
k=2

�
1� 1

2k

� �
1� 1

2k�1
�
= 1

2

2nQ
k=2

�
1� 1

k

�
.

D�après la question précédente on a donc : u2n � 1
4n
.

Pour tout entier naturel n � 1 on donc : (n+ 1)u2n � n+1
4n
, soit vn � n+1

4n
.

En passant à la limite quand n tend vers l�in�ni on déduit : lim vn � 1
4
, donc C = lim vn > 0.

5. D�après 4/ on a : lim (n+ 1)u2n = C, donc lim
p
n+ 1un =

p
C 6= 0, ce qui équivaut à

p
n+ 1un �

p
C, soit un �

p
Cp
n+1

�
p
Cp
n
.

15 1.
q

1+x
2
� x () 1+x

2
� x2 () 2x2 � x � 1 � 0. Le trinôme 2x2 � x � 1 a 1 pour

racine évidente, l�autre valant �1
2
(produit des racines = c

a
=�1

2
), donc 2x2 � x � 1 � 0 pour

x 2
�
�1
2
; 1
�
et en particulier sur [0; 1]. On a donc

q
1+x
2
� x pour tout x de [0; 1].

Montrons par récurrence la propriété P (n) "0 � xn � 1".
P (0) est vraie car x0 2 [0; 1].
Supposons P (n) vraie pour un entier n donné. On a donc 0 � xn � 1, donc 0 � 1+xn

2
� 1,

donc (la fonction racine étant croissante sur R+), 0 �
q

1+xn
2
� 1, donc P (n+ 1) est vraie.

Conclusion : d�aprèd le principe de récurrence on a, pour tout entier naturel n, 0 � xn � 1.
En remplaçant x par xn dans l�inégalité

q
1+x
2
� x on obtient xn+1 � xn donc la suite (xn)

est croissante. Comme elle est majorée par 1elle est convergente.

Soit l sa limite. En passant à la limite xn+1 =
q

1+xn
2
on obtient, la suite (xn+1) convergeant

vers l et la fonction f étant continue en 1, l = f (l). Comme précédemment on obtient 2x2�x�
1 = 0, soit l = 1 ou l = �1

2
. La suite étant à termes positifs, on a l � 1, donc l = lim xn = 1 .

2. Pour tout entier naturel n on a : jxn+1 � 1j =
���q1+xn

2
� 1
��� = j 1+xn2 �1j���p 1+xn

2
+1
��� = 1

2
: jxn�1j���p 1+xn

2
+1
��� .

Minorons le dénominateur : comme xn � 0 on a
q

1+xn
2
+ 1 � 1, donc, en prenant l�inverse

: 1p
1+xn
2

+1
� 1, d�où 8n 2 N; jxn+1 � 1j � 1

2
jxn � 1j .

Par une récurrence facile on obtient : 8n 2 N; jxn � 1j �
�
1
2

�n jx0 � 1j.
Comme 1

2
2 ]�1; 1[, la suite

�
1
2

�n
converge vers 0, donc

�
1
2

�n jx0 � 1j aussi.
Comme 8n 2 N; 0 � jxn � 1j �

�
1
2

�n jx0 � 1j, on a, d�après le théorème de l�étau, jxn � 1j �!
0 et on retrouve que limxn = 1.

3. a. On a, pour tout réel x, cos (2x) = cos2 (x) � sin2 (x), et compte tenu de la relation
cos2 (x) + sin2 (x) = 1, on obtient cos (2x) = 2 cos2 (x)� 1 .

b. Montrons par récurrence que pour tout entier naturel n on a xn = cos
�
�
2n

�
.

Soit P (n) la propriété "xn = cos
�
�
2n

�
".

La propriété P (0) est vraie : x0 = cos (�).
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Supposons P (n) vraie pour un entier n donné : xn = cos
�
�
2n

�
.

On a donc : xn+1 =
q

1+cos(�=2n)
2

. La relation du 3/ a/ s�écrit 1+cos(2x)
2

= cos2 (x) pour tout

réel x, donc 1+cos(�=2
n)

2
= cos2

�
�

2n+1

�
(en prenant x = �

2n+1
), et xn+1 =

q
cos2

�
�

2n+1

�
= cos

�
�

2n+1

�
(car �

2n+1
2
�
0; �

2

�
, donc cos

�
�

2n+1

�
� 0). La propriété P (n+ 1) est donc vraie.

Conclusion : 8n 2; xn = cos
�
�
2n

�
.

Quand n tend vers l�in�ni, �
2n
converge vers 0, donc cos

�
�
2n

�
�!
n!+

cos (0) = 1, car la fonction

cos est continue en 0: On retrouve que (xn) converge vers 1.

16 1. Pour tout entier naturel n on a : vn+1 =
un+1 + 1=2

un+1 + 1
=

2un�1
2un+5

+ 1
2

2un�1
2un+5

+ 1
=
6un + 3

8un + 8
, soit

vn+1 =
3

4
:
un + 1=2

un + 1
=
3

4
:vn.

La suite (vn) est donc une suite géométrique de raison 3=4.

Comme v0 =
u0 + 1=2

u0 + 1
=
1

2
, on a vn =

1

2
:

�
3

4

�n
pour tout n 2 N.

2. On a vn =
un + 1=2

un + 1
() unvn + vn = un +

1

2
() un (vn � 1) = �vn +

1

2
. Comme

vn 6= 1 pour tout n on a : un =
�vn + 1=2
vn � 1

=
�2vn + 1
2vn � 2

, soit un =
�
�
3
4

�n
+ 1�

3
4

�n � 2 .

Comme (vn) converge vers 0 (suite géométrique de raison 3
4
2 ]�1; 1[), il s�ensuit que

limun = �
1

2
.

17 1. Soit P (n) la propriété "
nX
k=1

1
k(k+1)

= 1� 1
n+1
".

Initialisation : P (1) est la propriété 1
1(1+1)

= 1� 1
2
qui est vraie.

Hérédité : supposons la propriété P (n) vraie pour un entier n donné et montrons que
P (n+ 1) est vraie.

On a :
nX
k=1

1
k(k+1)

= 1� 1
n+1
; en ajoutant 1

(n+1)(n+2)
au deux membres on obtient :

nX
k=1

1

k (k + 1)
+

1

(n+ 1) (n+ 2)
= 1� 1

n+ 1
+

1

(n+ 1) (n+ 2)
, soit :

n+1X
k=1

1

k (k + 1)
= 1� 1

n+ 1
+

1

(n+ 1) (n+ 2)
.

D�autre part on a : 1� 1
n+1

+ 1
(n+1)(n+2)

= 1� (n+2)�1
(n+1)(n+2)

= 1� n+1
(n+1)(n+2)

= 1� 1
n+2
.

On a donc :
n+1X
k=1

1
k(k+1)

= 1� 1
n+2
, donc la propriété P (n+ 1) est vraie.

Conclusion : la propriété P (n) est initialisée à n = 1 et héréditaire donc, d�après le principe
de récurrence, P (n) est vraie pour tout entier naturel n supérieur ou égal à 1.

2. Pour a et b réels et k 2 N� on a : a
k
+ b

k+1
= a(k+1)+bk

k(k+1)
= (a+b)k+a

k(k+1)
.
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On aura a
k
+ b

k+1
= 1

k(k+1)
pour tout k 2 N� si a + b = 0 et a = 1 ce qui donne

a = 1 et b = �1 .

Conclusion : 8k 2 N�; 1
k(k+1)

= 1
k
� 1

k+1
.

On écrit :

k = 1 :
1

1 (1 + 1)
=
1

1
� 1
2

k = 2 :
1

2 (2 + 1)
=
1

2
� 1
3

...
...

...

k = n :
1

n (n+ 1)
=
1

n
� 1

n+ 1
.

En ajoutant membres à membres et après simpli�cations on obtient :

8n 2 N�;
nX
k=1

1

k (k + 1)
= 1� 1

n+ 1
.

Comme la suite
�

1
n+1

�
tend vers 0 on a : lim

n!+1
xn = 1.

18 Pour tout n � 1 on a : un+1
un

= (2n+2)!

22n+2((n+1)!)2
� 22n(n!)2

(2n)!
= (2n+2)!

(2n)!
� 22n

22n�22 �
�

n!
(n+1)!

�2
.

On a (2n+ 2)! = (2n)! � (2n+ 1) � (2n+ 2) et (n+ 1)! = n! � (n+ 1), d�où un+1
un

=
(2n+2)(2n+1)

4(n+1)2
= 2n+1

2(n+1)
. Comme 2n + 1 < 2n + 2, on a un+1

un
< 1. La suite (un) étant à termes

strictement positifs elle est strictement décroissante.

Comme elle est minorée par 0 elle est convergente.

19 Première méthode.
1. a. Soit la propriété P (n) : "un � 0".
P (0) est vraie. Si elle est vraie pour un entier naturel n donné on a : un � 0 =) �un �

0 =) 3 � un > 0, donc 1
3�un > 0 et multipliant les deux membres par un � 0 on obtient

2un
3�un � 0, soit un+1 � 0 et donc P (n+ 1) est vraie.
D�après le principe de récurrence, la propriété P (n) est vraie pour tout entier naturel n.

b. Pour tout entier naturel n on a un+1 � un = 2un
3�un � un =

un(un�1)
3�un . Le dénominateur

est strictement positif et . un (un � 1) � 0 (car un � 0) donc un+1 � un � 0.
La suite (un) est donc croissante. Comme elle est majorée (par 0) elle est convergente.
Soit l sa limite. En passant à la limite dans un+1 = 2un

3�un il vient : l =
2l
3�l ce qui équivaut à

l (l � 1) = 0, soit l = 0 ou l = 1. La suite (un) étant à termes négatifs, on a l � 0 donc l = 0 .
Deuxième méthode.

2. a. Pour tout entier naturel n on a vn+1 =
un+1

1� un+1
=

2un
3�un

1� 2un
3�un

= 2un
3(1�un) .

On a donc : 8n 2 N�; vn+1 = 2
3
� vn. (vn) est donc une suite géométrique de raison 2

3
.

b. Comme 2
3
2 ]�1; 1[ on a : lim vn = 0.

D�autre part, pour tout entier naturel n on a : vn =
un

1� un
() vn � unvn = un ()

un (1 + vn) = vn, soit un = vn
1+vn

(on a vn 6= �1 pour tout n).
Comme (vn) 0 on en déduit que (un) �! 0.
Troisième méthode.
3. a. Pour tout entier naturel n : jun+1j =

��� 2un3�un

��� = ��� 2
3�un

���� junj.
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Comme un � 0 on a 3� un � 3, donc 0 � 1
3�un �

1
3
et
��� 2
3�un

��� � 2
3
.

On a donc : 8n 2 N; .
b. Par un raisonnement en cascade ou par récurrence on en déduit que : 8n 2 N; junj ��

2
3

�n � ju0j (écrire les inégalités juk+1j � 2
3
� jukj pour k = 0; 1; : : : ; n � 1 et les multiplier

memebres à membres).
On a donc 8n 2 N; 0 � junj � 2

�
2
3

�n
. D�après le théorème de l�étau junj �! 0 (car

2
�
2
3

�n �! 0) donc (un) �! 0 .

20 1. Pour tout entienr naturel non nul n on a : vn+1 � vn = 1
(n+1)3

> 0 donc la

suite (vn) est (strictement) croissante. De même wn+1 � wn = vn+1 � vn + 1
(n+1)2

� 1
n2
, soit

wn+1 � wn = 1
(n+1)3

+ 1
(n+1)2

� 1
n2
= n2+n2(n+1)�(n+1)3

n2(n+1)3
= �n2�3n�1

n2(n+1)3
< 0 donc la suite (wn) est

(strictement) décroissante.

De plus on a : n 2 N�; wn � vn = 1
(n+1)3

qui tend vers 0 donc les suites (vn) et (wn) sont
adjacentes. Il en résulte que la suite (vn) (et (wn)) est convergente. Soit l = lim vn.

Pour tout n 2 N� on a donc un < l < wn donc jvn � lj < jwn � vnj = 1
n2
. De même on a

jwn � lj < 1
n2
.

2. D�après les inégalités précédentes, pour avoir jvn � lj < 10�5 et jwn � lj < 10�5il su¢ t
d�avoir 1

n2
< 10�5 soit n2 > 105 ou n � 317 (à la calculatrice).

21 1. Soit P (n) la propriété "n! � n2".
P (4) est vraie car 4! = 24 et 42 = 16.

Supposons que la propriété P (n) soit vraie pour un entier donné n � 4.
On a n! � n2 donc (n+ 1)n! � (n+ 1)n2 soit (n+ 1)! � (n+ 1)n2.
Pour que (n+ 1)! � (n+ 1)2 il su¢ t que (n+ 1)n2 � (n+ 1)2 ce qui équivaut à n2 � n+1

ce qui est vrai (signe du trinôme X2 �X � 1) donc on a bien (n+ 1)! � (n+ 1)2 et P (n+ 1)
est vraie.

Conclusion : on a n! � n2 pour n � 4.

La série
X
n�0

1

n!
est à termes positifs et

1

n!
� 1

n2
pour n � 4 terme général d�une série

convergente (série de Riemann
X
n

1

n�
avec � = 2 > 1) donc elle est convergente.

2. Soit P (n) la propriété "e = 1 +
1

1!
+
1

2!
+ : : :+

1

n!
+
e

n!

Z 1

0

une�udu".

La propriété P (0) est vraie car on a : 1+ e
R 1
0
e�udu = 1+ e [�e�u]10 = 1+ e [�e�1 + 1] = e.

Supposons que la propriété P (n) soit vraie pour un entier donné n. On a donc e = 1+
1

1!
+

1

2!
+ : : :+

1

n!
+
e

n!

Z 1

0

une�udu.

Intégrons
Z 1

0

une�udu par parties en posant U = e�u; U 0 = �e�u et V 0 = un, V =
un+1

n+ 1

donc
R 1
0
une�udu =

�
e�u

un+1

n+ 1

�1
0

+
1

n+ 1

Z 1

0

e�uun+1du = e�1
1

n+ 1
+

1

n+ 1

Z 1

0

e�uun+1du, d�où

e = 1+
1

1!
+
1

2!
+ : : :+

1

n!
+
e

n!

�
e�1

1

n+ 1
+

1

n+ 1

Z 1

0

e�uun+1du

�
, soit ex = 1+

1

1!
+
1

2!
+ : : :+

1

(n+ 1)!
+

e

(n+ 1)!

Z 1

0

une�udu, donc P (n+ 1) est vraie.
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La propriété P (n) est donc vraie pour tout entier naturel n.

Posons Sn =
nX
k=0

1

k!
(somme partielle de la série

X
n�0

1

n!
). On a donc Sn = e�

e

n!

Z 1

0

une�udu.

Pour u 2 [0; 1] on a 0 � une�u � 1 donc 0 �
Z 1

0

une�udu �
Z 1

0

du = 1, d�où 0 �

e

n!

Z 1

0

une�udu � e

n!
.

Il en résulte (d�après le théorème de l�étau) que la suite
e

n!

Z 1

0

une�udu converge vers 0 donc

lim
n!+1

Sn = e ce qui s�écrit :
+1X
n=0

1

n!
= e .

22 a. On a

r
n+ 1

n
�!
n!+1

1 donc la série diverge car son terme général ne tend pas vers

0;

b. La série
X
n�2

1

n3 � n est à termes positifs et
1

n3 � n � 1

n2
terme général d�une série

convergente (série de Riemann
X
n

1

n�
avec � = 2 > 1) donc elle est convergente.

c. la série
X
n�1

(�1)n

(2n+ 1) (2n+ 3)
n�est pas à termes positifs; voyons si elle est absolument

convergente : on a

���� (�1)n

(2n+ 1) (2n+ 3)

���� = 1

(2n+ 1) (2n+ 3)
� 1

4n2
terme général d�une série

convergente donc la série
X
n�1

(�1)n

(2n+ 1) (2n+ 3)
est absolument convergente donc convergente;

d. Pour x 2 [k; k + 1] on a k � x � k + 1 donc
p
k �

p
x �

p
k + 1 et en intégrant de k à

k+1 on obtient :
p
k �

Z k+1

k

p
xdx �

p
k + 1. En sommant de k = 0 à n on obtient :

nX
k=0

p
k �Z n+1

0

p
xdx �

nX
k=0

p
k + 1. Cet encadrement s�écrit

Z n

0

p
xdx �

nX
k=0

p
k �

Z n+1

0

p
xdx;

e. La série est à termes positifs et on a 0 � arctann � �
2
, donc 0 � arctann

n2
� �

2
: 1
n2
. Comme

1
n2
est le terme général d�une série convergente, la série

X
n�1

arctann

n2
converge;

f. E¤ectuons le dl du terme général. On a, au voisinage de 0, tan x = x + o (x2) et
sin x = x + o (x2), donc tan

�
2
n

�
� sin

�
1
n

�
= 1

n
+ o

�
1
n2

�
, donc le terme général est équivalent à

1
n
, terme général d�un série divergente, donc la série est divergente;

g. La série est à terms positifs et on a
(1 + n) sinn

n2
p
n

� (1 + n)

n2
p
n
; on a

(1 + n)

n2
p
n
� n

n2
p
n
= 1

n3=2

terme général d�une série convergente, donc la série converge;
h. Ici la série n�est pas à termes positifs donc on regarde si elle est absolument convergente.

On a

����(�1)npnen

���� = p
n

en
. D�autre part on a

n2
p
n

en
= e2 lnn+

1
2
lnn�n = e

5
2
lnn�n, soit

n2
p
n

en
=

e
5
2
n( lnnn �1); comme lnn

n
! 0, on a

n2
p
n

en
! 0 donc

p
n

en
= o

�
1
n2

�
, terme général d�une série

convergente, donc la série est absolument convergente, donc convergente.
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Comme
Z p

xdx = 2
3
x3=2 on obtient 2

3
n3=2 �

nX
k=0

p
k � 2

3
(n+ 1)3=2. Il en résulte que

nX
k=0

p
k

2
3
n3=2

�! 1 donc
nX
k=0

p
k � 2

3
n3=2.

On a donc

p
1 +

p
2 + : : :+

p
n

n�
� 2

3

1

n��3=2
. C�est le terme d�une série convergente ssi

�� 3
2
> 1 soit � >

5

2
.

La série étant à termes positifs, elle converge ssi � >
5

2
.

23 1. Pour k � t � k + 1 on a
p
k �

p
t �

p
k + 1(car x 7!

p
x est croissante sur R+).

En intégrant membres à membres entre k et k + 1 on obtient :
p
k �

Z k+1

k

p
xdx �

p
k + 1 .

En sommant ces inégalités de 1 à n et grâce à la relation de Chasles pour les intégrales on

a :
p
1 +

p
2 + : : :+

p
n �

Z n+1

1

p
xdx �

p
2 +

p
3 + : : :+

p
n+ 1.

Cet encadrement peut s�écrire
Z n

1

p
xdx+1 �

p
1+

p
2+ : : :+

p
n �

Z n+1

1

p
xdx pour tout

entier naturel n. Comme
Z p

xdx = 2
3
x3=2 on obtient 2

3

�
n3=2 � 1

�
+1 �

p
1+

p
2+ : : :+

p
n �

2
3

h
(n+ 1)3=2 � 1

i
.

En divisant les trois membres par 2
3
n2=3 le premier et troisième membre tendent vers 1 donc,

d�après le théorème de l�étau,
p
1+
p
2+:::+

p
n

2
3
n2=3

! 1 soit
p
1 +

p
2 + : : :+

p
n � 2

3
n2=3 .

2. On a une série à termes positifs et son terme général est équivalent d�après 1/ à 2
3
n2=3

n�
=

2
3

1

n��
2
3
. Or la série de terme général 1

n��
2
3
converge sii � � 2

3
> 1 (série de Riemann) donc la

série
X
n�1

p
1+
p
2+:::+

p
n

n�
converge ssi � > 5

3
.

24 Pour tout n 2 N tel que n � 2, on a 2� e� 1
n > 0 donc ln

�
2� e� 1

n

�
> 0 pour � 1 donc

la série est à terme positifs.
Or, au voisinage de 0, et = 1 + t+ o (t).

Donc, e�
1
n = 1� 1

n
+ o

�
1
n

�
au voisinage de l�in�ni et ln

�
2� e� 1

n

�
= ln

�
1 + 1

n
+ o

�
1
n

��
On a donc ln

�
2� e 1n

�
� 1

n
.

La série
P

1
n
étant divergente (série harmonique) on en déduit que la série

P
ln
�
2� e 1n

�
diverge vers +1.

25 1. La fonction f est dérivable sur [0; 1] (produit de fonctions dérivables) et :

8x 2 [0; 1] ; f 0 (x) = 2ex (x+ 1) .

On a donc : 8x 2 [0; 1] ; f 0 (x) > 0 donc f est strictement croissante sur [0; 1] :f étant
continue c�est donc une bijection de [0; 1] sur [f (0) ; f (1)] = [0; 2e].

La bijection réciproque f�1 de f est une bijection de [0; 2e] dans [0; 1], continue, strictement
croissante.

29



2. L�équation xex = 1 est équivalente à f (x) = 2. Comme 2 2 [0; 2e], cette équation a une
unique solution � dans [0; 1] (l�antécédent de 2 par f).

Comme f (0) et f (1) sont di¤érents de 2 on a � 2 ]0; 1[.
3. Récurrence sur n. Soit la propriété P (n) : "0 < un < 1".
Elle est vraie pour n = 0 d�après 2/.

Supposons Pn vraie pour un certain entier n : 0 < un < 1. La fonction f�1 étant une
application strictement croissante de [0; 2e] dans [0; 1] on a : f�1 (x) 2 ]0; 1[ pour x 2 ]0; 2e[
donc f�1 (un) 2 ]0; 1[ soit 0 < un+1 < 1 et la propriété est vraie au rang n+ 1.
Conclusion : la propriété Pn est vraie pour tout entier naturel n.

4. On a : 8x 2 [0; 1] ; f (x) � x = x (2ex � 1). Pour x � 0 on a ex � 1 donc 2ex � 1 > 0
d�où f (x)� x � 0 pour tout x 2 [0; 1].
On a f (x) � x = 0 ssi x (2ex � 1) = 0. Comme 2ex � 1 6= 0 sur [0; 1] c�est équivalent à

x = 0.

En remplaçant x par un dans l�inégalité f (x) � x (possible car un 2 [0; 1]) on obtient
f (un) � un, et en prenant l�image par f�1 (croissante) il vient un � f�1 (un) = un+1 . La suite
(un) est décroissante.
5. Comme elle décroissante et minorée (par 0) elle est donc convergente.
Sa limite l véri�e f�1 (l) = l (car f�1 continue en l) soit f (l) = l en composant par f , donc

l = 0 d�après la question précédente.

26 1. La représentation graphique classique donne un "escalier qui descend" : on conjec-
ture que la suite (un) est tend vers 0 en décroissant.

De plus on a f 0 (x) = (1�x2)
(x2+x+1)2

donc f est croissante sur [0; 1].

On montre d�abord par récurrence que pout tout n on a P (n) : 0 � un � 1.
La propriété est vraie au rang 0. Si elle est vraie pour un entier n donné on a : 0 < un � 1

donc f (0) < f (un) � f (1) (car f croissante sur [0; 1]) donc 0 < un+1 � 1=3 < 1 et P (n+ 1)
est vraie.

On a donc : 8n 2 N; 0 < un � 1.
De plus, pour tout entier naturel n, on a un+1

un
= 1

u2n+un+1
< 1 (car un > 0) donc la suite

(un) est (strictement) décroissante car à termes > 0. Comme elle est minorée par 0 elle est
convergente. Si l est sa limite on obtient par passage à la limite : l = l

l2+l+1
soit l (l2 + l + 1) = l

ce qui équivaut à l2 (l + 1) = 0, dont les solutions sont l = 0 ou l = �1. Comme (un) est une
suite à termes positifs on a l � 0 donc �nalement limun = 0 .

2. Pour tout entier naturel non nul p on a : f
�
1
p

�
= 1=p

(1=p)2+1=p+1
= p

1+p+p2
� p

p+p2
(car

1 + p+ p2 � p+ p2) soit f
�
1
p

�
� 1

p+1
.

3. Soit la propriété P (n) : "0 < un � 1
n+1
". P (0) est vraie car u0 = 1 � 1.

Si elle est vraie pour un entier n donné on a : 0 < un � 1
n+1

donc f (0) < f (un) � f
�

1
n+1

�
(car f croissante sur [0; 1]) et comme f

�
1
n+1

�
� 1

n+2
(question précédente) on a 0 < un+1 � 1

n+2

et P (n+ 1) est vraie.

On a donc : 8n 2 N�; 0 < un � 1
n+1

.

D�après le théorème de l�étau on retrouve que la suite (un) tend vers 0.

4. Soit la propriété P (n) : 1
un
� n+ 1 +

nX
k=1

1
k
. P (1) est vraie car u1 = 1

3
.
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Supposons qu�elle soit vraie pour un entier n donné. On a 1
un+1

= un+1+
1
un
et un � 1

n+1
(2/)

et 1
un
� n+1+

nX
k=1

1
k
(hypothèse de récurrence) donc 1

un+1
� 1

n+1
+1+n+1+

nX
k=1

1
k
= n+2+

n+1X
k=1

1
k

et P (n+ 1) est vraie.

La propriété P (n) est donc vraie pour tout entier naturel n � 1.

5. En sommant les inégalités 1
k
�
Z k

k�1

dx
x
pour k = 2 à n il vient :

nX
k=2

1
k
�
Z n

1

dx
x
= lnn donc

nX
k=1

1
k
� 1+lnn pour n � 2. D�après la question précédente on a donc 8n � 2; 1

un
� n+ 2 + lnn .

On en déduit que un � 1
n+2+lnn

pour n � 2 et d�après la question 3/ on obtient l�encadrement
:

8n � 2; 1

n+ 1
� un �

1

n+ 2 + lnn
.

En mulitipliant par n : n
n+1

� nun � n
n+2+lnn

. Or lim n
n+1

= 1 et n
n+2+lnn

= 1
1+2=n+lnn=n

�! 1

(car ln
n
�! 0) donc, d�après le théorème de l�étau : limnun = 1 soit lim un

1=n
= 1 ou encore

un � 1
n
.
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