Exercices Suites réelles
Soit la suite (u,) définie par ug € |1, 2| et, pour tout entier n > 0 :

un+1:un—|—u——1.
n

1. Représenter graphiquement les premiers termes de cette suite.

2. a. Montrer que pour tout entier naturel n on a : u, > 0 puis pour tout entier naturel
n>1u, >1.

2. b. Démontrer que la suite (u,) est convergente et calculer sa limite.
On veut démontrer le résultat précédent d’une autre facon.

3. a. Montrer que pour tout entier naturel n on a :

i1 — 1) < (un — 1)°.

En déduire que : Vn € N, Ju, — 1] < |ug — 1> .

Retrouver le résultat de la question 2/ b/.

3. b. On prend ug = 1,5 . Trouver un entier naturel N tel que :

VneNn>N= |u, —1] <107,

On consideére la suite (z,,) définie par récurrence par :

Tn

zo=1letVn €N,z = —"
0 +1 (1—|—J]n)2

1. Etudier la convergence de la suite (x,,) et trouver sa limite éventuelle.

2. Montrer que la suite (v,) définie, pour n < 1, par v, = - — —1— est convergente et

trouver la limite. oo

3. Montrer que la suite (z,) est équivalente & 5-.

On rappelle que si une suite («,) est telle que nirgoo (o, — appq) = [ alors nirgoo% =1
(voir feuille 3, I/ 3/ b/).

Que pensez-vous de la vitesse de convergence de (z,,) par rapport a celle de (u,) 7

Vérifier en calculant a la calculatrice une valeur approchée de x1qg.

Soit n un entier naturel non nul et a un réel strictement positif.
On se propose d’étudier les solutions de 1’équation :

1 1 1 1

x x+1+x—|—2”'+x+2n:

a (E,).

A cet effet on consideére la fonction f,, de la variable réelle x définie par :

1 1 1 1

fn(x>zg+x+1+x+2”'+x+2n

1. Dresser le tableau de variation de f,.
En déduire le nombre de solutions de I'équation (E,).

2. Montrer qu'il y a une unique solution, que 1’on notera x,, dans l'intervalle |0, +oc|.
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3. Démontrer que pour tout réel z > 0 on a :

1
pg| <ln(:€+1)—ln(w)<z.

En déduire que pour tout réel x strictement positif on a :

1 2n 1
n(z)—— <In{14—| < fulx)— ,
I (2) —ta n<+x> fn () x—|—2n+a
. 1 ( 2n> 1
puisque:a— — <In(l+— | <a— ——.
n Ty T, + 2n
4. Déduire de la question précédente que pour tout entier naturel non nul n :
- 2n
Tn .
ev —1

Quelle est la limite de la suite (z,,) ?

2n
5. Quelle est la limite de la suite In (1 + —) ? Prouver qu’il existe un réel « strictement
Tn

positif, que I'on calculera, tel que : z,, ~ an.
On considere la fonction f définie sur [0, 1] par f (x) = 2xe”.

1. Montrer que f réalise une bijection de [0, 1] dans un ensemble & préciser. Donner des
propriétés de f~! (bijection réciproque de f ) et en donner le tableau de variation.

2. Montrer qu'il existe un unique réel a de Uintervalle ]0, 1] tel que
ae” = 1.

On définit la suite (u,) par ug = a et u,1 = f~! (u,) pour tout entier naturel n.
3. Montrer que : Vn € N,u, €10, 1].

4. a. Montrer que pour tout réel = de [0, 1] on a f (z) —x > 0, et que ’égalité ne se produit
que pour z = 0. Que peut-on en déduire sur le sens de variation de (u,,) ?

b. En déduire que la suite (u,) est convergente puis qu’elle converge vers 0.

n
On pose pour tout entier naturel n : S, = Z Uk
k=0
5. a. Montrer que pour tout entier naturel n on a :

1

Upi1 = §une_“"“.
2 . 4 —-S
b. En déduire par récurrence que u, = S

c. Montrer que pour tout entier naturel n on a :

()
u, < (=] .
2

En déduire que la suite (.5,,) est majorée puis qu’elle est convergente.

Soit L sa limite. Montrer que :
o< L <2.

d. Donner un équivalent de (uy,).



On consideére, pour n € N*, ’application ¢,, de R, dans R définie par :
o, (@) =a"+2" + .+ -1,

et 'équation ¢, () = 0 soit 2" + 2" '+ ...+ 2 =1 pour z € R,.

1. Montrer que cette équation a une unique solution x, sur R, et que pour tout entier
naturel n on a x, € |0, 1]. Calculer z; et z».

2. Pour z € 0, 1], comparer ¢, () et ¢, ().

En déduire que la suite (z,,) est décroissante. Conclusion pour cette suite ?

3. Etablir avec soin que : lim z] = 0.
n—+0o00

4. Montrer que pour tout entier n non nul on a : z, (1 — ) =1 — .
En déduire la limite de la suite (z,,).
On pose z,, = % (1+¢,) avec lim ¢, =0.

n—-+00

n+1

5. Vérifier que : Vn € N* (1 +¢,)"" = 2""l¢, et en déduire que :

VneN (n+1)e,In(14+¢,)=Mn+1)e,In2+¢,1lne,.

6. Déterminer alors la limite de (n 4 1) &, puis celle de (1 +,)" .
7. Déduire des questions précédentes que ¢, et # puis que z,, = % (1 + QH% +o0 (#))

Dans les questions suivantes on pose n = 2. On note o = xs.

1

Soit f la fonction définie sur Ry par f (z) = 7.

8. a. Montrer que f ([%,1}) C [%,1].

b. Soit la suite récurrente (u,) définie par : up =1 et u,41 = f (u,).

Montrer que : Vp € N, |up1 — af < 2 |u, — a| (indication : on pourra écrire, apres Pavoir
justifie, que o = f ().

c. En déduire la limite de la suite (u,) quand p tend vers +oo.

@ Partie 1. Pour tout entier naturel n > 1 on considére la suite (y,,) définie par :
1
n=31
k=1

1. Montrer que pour tout entier naturel £k > 1 on a == < MHLdt Tustrer graphiquement.

1 =Jr T
2. En déduire que :
Vn e N* y, <ln(n)+ 1.
Partie 2.

On considere la suite (z,,) définie par son premier terme zo = 1 et la relation de récurrence

1
Tptl = Tp + —.
n

3. Représenter graphiquement les premiers termes de cette suite. Emettre des conjectures
sur le sens de varition et la limite de (z,,).

4. Etudier le sens de variation de (z,). En raisonnant par ’absurde montrer que la suite
(x,) diverge vers +o0.

5. Pour tout entier naturel k exprimer z7,, — z7 en fonction de 3.



En déduire que pour tout entier naturel n non nul on a : z2 = 2n + 1 +

6. Retrouver que la suite (z,,) diverge vers +oo.

7. A Taide du résultat des questions 2/ et 5/ montrer que pour tout entier n supérieur ou

égal a2 on a :
In(n—1)

5}
xi§2n—l—§+ 9

(Indication : on notera que, d’aprés 5/ on a x; > 2k pour tout entier naturel k& > 1).

8. En déduire un encadrement de (z,,) puis que (z,) ~ v/2n.



Partie 3.
Cette partie est indépendante des deux autres.

On considére maintenant la suite récurrente (u,,) définie par son premier terme uy = 3/2 et
la relation de récurrence :

un+1=un—|—u——1.
n

9. Montrer que : Vn € N,u, > 1. Démontrer que la suite (u,) est convergente et calculer
sa limite.

10. Montrer que : Vn € N, (u,41 — 1) < (u, — 1)2.

En déduire que : Vn € N, |u, — 1| < —-.

Trouver un rang n tel que |u, — 1| < 107%. Faites un commentaire sur la vitesse de conver-

gence de la suite |u, — 1.
11. Montrer que pour tout réel 0 <a < 1lona: |u, — 1| =o(a").

Soit la suite (z,,) définie pour tout entier naturel n par :
Ty = 0
2 +3

Lnt1 = m

1. Montrer que pour tout entier naturel n supérieur ou égal & 1 on a : x, > 1.
2. Montrer que (x,) est convergente et trouver sa limite.
3. Montrer que pour tout entier naturel n on a : |z,41 — 1] < 3|2, — 1.

Retrouver les résultats de la question précédente.
81 Pour tout entier naturel n > 2 on définit sur 'intervalle [0; 1] la fonction f,, par
fo(x)=2" —nz+ 1.

1. Montrer que pour tout n > 2 I’équation f,, (z) = 0 a une unique solution x,, sur [0, 1].
Montrer que : Vn € N—{0;1},0 <z, < 1.
2. En s’inspirant de P'exercice IX/ de la feuille 9 montrer que la suite (x,,) est convergente.

. n41 .

3. En remarquant que pour tout entier n > 2, x,, = xT, montrer que :
2
vneNO0<zx, <-—.
n

1
4. Déterminer la limite de la suite (x,,) et montrer que x, ~ —.
n

1
On veut dans la suite améliorer ce résultat. On pose, pour n > 2, y, =z, — —.
n

5. a. Montrer que les suites (ny,) et (n?y,) convergent vers 0.

b. Vérifier que pour tout entier n > 2, y,, = #e”ln“*”y").

En déduire que y,, ~ #, puis que x, = % + n"1+1 + 0 (nn—lﬂ) (une telle écriture s’appelle

développement asymptotique de la suite (x,)).

Soient (u,) et (v,) les deux suites réelles définies par :

Uy + Up 2U, Uy,

v =
s Un+1
2 Up, + Un

ug = a,vg =bet Vn € Nyu, 1 =



ol a et b sont deux réels donnés tels que a > b > 0.

1. Montrer que pour tout entier naturel n on a u, > v,.

2. Montrer que les suites (u,) et (v,) convergent vers la méme limite.
3. Montrer que la limite commune des suites (u,) et (v,) est | = v/ab.
Dans la suite on prend a =2 et b = 1.

4. Montrer que :

2
Vn € N, [t — | < %
En déduire que :
1
Vn e N, |u, — v, < —— ST

A Taide de la calculatrice, trouver un entier n tel que u,, et v,, soient des valeurs approchées
(par excés et par défaut) de v/2 a 10710 pres.

M0 ] Question préliminaire : montrer que pour tout entier naturel n supérieur ou égal a 1

on a :
2k — T on
k=1
1. Soient n € N* et x1,x9,...,x, des réels compris entre 0 et 1.

Montrer que :
n
[[-e) 210
=1

On considére la suite (5,,) définie par :

* - 1
Vn e N ,Sn:H<1—?)
k=1
2. Démontrer que la suite (.S,) est décroissante.
Que peut-on en déduire au point de vue de sa convergence 7

3. A laide de la question 1/ montrer que :

1
Vn € N*, S, >2—n

4. Montrer que pour tout réel x de l'intervalle [0,1] on a :
In(l—2)<-—
En déduire que :
Vn e N*, S, < e /2,

Donner un encadrement de la limite de la suite (S,,).

11 Soit k£ un entier naturel non nul.

1. Montrer que 'équation arctanz = x — km a une unique solution x; sur l'intervalle
}/mr, S +km [
Trouver le limite de la suite (xj) et en trouver un équivalent.

us

2. Mont li —km)=1Z.
ontrer que lim (v — k) = 3



3. Montrer que : Vz > 0,5 — arctan (z) = arctan (1).

En déduire que, si on pose 7, = Z — (z, — km), on a :
) 2 )

1 1
Vk € N*, arctan (m) < 74 < arctan <E> )

4. Donner un équivalent de 7 lorsque k tend vers +oo (s’exprimant simplement en fonction
de k).

En déduire que : zp =k + 5 — ﬁ +o0 (%)

Dans la suite on fixe une valeur de k dans N* et on cherche une valeur approchée de
0, = xp, — km.

On définit la fonction f par f (z) = arctan (z + km). On remarquera que f (6;) = 0y.

5. Montrer qu'il existe un réel o, € [0, 1] tel que :

Ve € RT,0 < f'(x) < .

On définit la suite réelle (u,) par ug = 0 et pour tout entier naturel n, u,11 = f (uy).

6. Montrer que :
Vn € N,0 < 01 — tUngr < 0 (O — uy) -

En déduire que la suite (u,,) converge vers 6.
M2] 1. Montrer que pour tout entier naturel non nul n et tout réel o de l'intervalle ]0, 1] :

1—a)">1-na

de deux fagons : (i) par récurrence; (ii) en étudiant une fonction.
On considére la suite (u,) définie par : Vn € N*,u, = (1+ 1)".
2. Montrer que :

<1+ﬁ)n+1 1 1 n
Nf e = (14— 1—-— .
vn e N, (1+2)" <+n+1)< (n+1)2)

3. Déduire des deux questions précédentes que la suite (u,) est croissante.

4. En écrivant (1 + %)n (1 — %)n = (1 — ﬁ)n pour tout entier naturel n non nul montrer
que :

1 n
Vn € N¥, (1+—> < 2.
2n

En déduire que la suite (u,) est majorée. Que peut-on dire de la suite (u,) ?

M3 1 Pour z réel positif ou nul on pose :

f(x) =

x
1422

1. Montrer que pour tout réel positif ou nul on a : |f (z) — x| < z°.

En déduire un encadrement de f (x) valable pour z > 0.

n

>k
2. Montrer & I'aide d’'un encadrement que la suite (y,,) définie pour n > 1 par : y, = =5

converge vers 0.




n
3. Déduire des questions précédentes que la suite (x,,) définie pour n > 1 par z,, = > f (%)
k=1
est convergente et déterminer sa limite /.
n
4. Montrer que z,, — [ ~ % (on pourra admettre dans cette question seulement que > k3 =
k=1
n2(n+1)?2
41 Soit la suite (u,,) définie pour n > 1 par :
Ix3x5x...x((2n—1)
Uy = .
" 2X4x6x...%x(2n)

1. Exprimer u,, a ’aide de factorielles.

2. Etudier le sens de variation de (u,,).

Démontrer que la suite (u,) est convegente.

On pose v, = (n + 1) u?.

3. Etudier le sens de variation de (v,) et montrer que la suite (v,) est convegente.
En déduire la limite de la suite (uy,).

4. a. Simplifier :

n
b. En remarquant que u, = [] (1 — i) = % I (1 — ﬁ) déduire de la question précé-
k=1 k=2
dente que

VnZZ,uiZ

5]

puis que la limite de la suite (v,) est une constante C' strictement positive.

5. Donner un équivalent de (u,,) faisant intervenir C'.
Soit la suite (z,,) définie par xo € [0,1] et :

I+,
VneN x,1q = 4—21: )

1. Montrer que la suite (x,,) est convergente et calculer sa limite.
On veut retrouver le résultat précédent de deux autres fagons.

2. Trouver un réel k € [0, 1] tel que :
Vn e N, |z, — 1| < k|z, — 1.

Retrouver le résultat de la question 1/.
3. a. Calculer, pour z réel, cos (2z) en fonctin de cos (z).
b. On pose z = cos (@) avec a € [0, 5].

Montrer que pour tout entier naturel n on a :

Q
T, = COS <2—n> .



Retrouver le résultat de la question 1/.

On définit la suite réelle (u,) par :

2u, — 1
up=0et Vn € N u, 1 = 4. 15
. .. Lo 20 —1
Soit f 'application de R\ {—5/2} définie par f (z) = w5
x
up +1/2

1. Montrer que la suite (v,) définie par v, = est une suite géométrique dont on

Uy + 1
déterminera le premier terme et la raison. En déduire v,, en fonction de n.

2. Calculer u,, en fonction de v,, et en déduire I'expression de u,, en fonction de n puis la
limite de (uy,).

1. Démontrer par récurrence sur n que :

- 1 1
N* — _=1- .
vn € ’;kz(k:Jrl) n+1

On veut démontrer cette formule d’une autre fagon.

2. Montrer qu’il existe deux réels a et b tels que :

1 a b
VheN, — -2, %
SNTTD T E ke

Par un procédé "en cascade" donner une autre démonstration de la formule du 1/.

* _ 1
3. Pour n € N* on pose z, = Zm
k=1
Quelle est la limite de la suite (z,,) ?
Soit la suite (u,) définie pour tout entier naturel n par

B (2n)!
T e ()2

Etudier le sens de variation de (u,).

En déduire que (u,) est convergente.
Soit la suite (u,) définie par uy = —2 et pour tout entier naturel n

2uy,

Unp+1 = .
3—up,

On veut étudier cette suite de plusieurs facons.
1. Premiére méthode

a. Montrer que (u,) est majorée par 0.

b. Montrer que cette suite est convergente et calculer sa limite.
2. Deuxiéme méthode

C 1 . e Lo . Uu
On considére la suite auxiliaire (v,) définie pour tout entier naturel n par v, = —

_un



a. Démontrer que (v,) est une suite géométrique et préciser sa raison.
b. Calculer la limite de (v,) et en déduire celle de (u,,).
3. Troisiéme méthode
a. Trouver un réel k € )0, 1] tel que pour tout entier naturel n : |u, 1] < k X |uy,].

b. Retrouver le résultat des questions précédentes.

n

1
Soit la suite (v,,) définie pour n > 1 par v, = > =] et la suite (w,) définie pour n > 1
k=1
1
par w, = v, + —.
n
1. Etudier le sens de variation des suites (v,,) et (wy).

En déduire que la suite (v,,) est convergente. Soit [ sa limite. Donner une majoration de
|v, — ] et de |w, — | en fonction de n.

2. Donner un rang a partir duquel v,, et w, sont des valeurs approchées par défaut et par
excés de | avec une précision de 1072,

1. Montrer que pour tout pour tout entier naturel n supérieur ou égal a 4 on a n! > n?.

1
En déduire la nature de la série Z —
n!
n>0
2. Montrer que pour tout entier naturel n on a :

11 1 e (',
e=l++-+...+—=+— [ u'edu.
12! n!  nlJ,
+o0 1
En déduire la valeur de Z —.
nzon!

E Préciser la nature des séries suivantes :

/n+1 (-1)" VIHV2+... 40
a Z Zn?’—n © ;(2n+1)(2n+3 Z ne ot

n>1 n>2 n=1
k+1
o € R (montrer que pour tout entier naturel k on a vk < Vrdr < vk +1 et en déduire
k
arctann
un équivalent de la suite V1 +v/2 + ...+ /n); e. Z —— L Ztan (% — sin (1) g.
n>1 n n>1
1+n)sinn o L. n%/n
Z ( 5 ; h. Z (indication : trouver la limite de \/_
n?y/n en
n>1 n>1

1. Montrer que pour tout entier naturel £ on a

k+1

VE < Vade <VE+1
k

En déduire un équivalent de VI+V24+ ...+ N
VI+V2+...+yn

na

suivant les valeurs du réel o.

2. Etudier la nature de la série Z

n>1

Soit la série Z In <2 — e*%>.

n>1

10



A T’aide d’un developpement limité de e~ donner la nature de la série Z In (2 — 6_%>.
n>1

On considere la fonction f définie sur [0, 1] par f (x) = 2ze®.

1. Montrer que f réalise une bijection de [0,1] dans un ensemble & préciser. Donner des
propriétés de f1, bijection réciproque de f, et en donner le tableau de variation.

2. Montrer qu'il existe un unique réel a de Uintervalle |0, 1] tel que
ae” = 1.

On définit la suite (u,,) par ug = a et u,.1 = f~* (u,) pour tout entier naturel n.

3. Montrer que : Vn € N, u, € ]0,1[.

4. Montrer que pour tout réel  de [0,1] on a f (x) — z > 0, et que 'égalité ne se produit
que pour z = 0.

Que peut-on en déduire sur le sens de variation de (u,,) ?

5. En déduire que la suite (u,) est convergente puis qu’elle converge vers 0.

6. Donner un équivalent de f en 0 puis un équivalent de f~! en 0.

On considére la suite (u,) définie par ug = 1 et pour tout entier naturel n par :

Unp,
Upp] = ————.
T2, +1
x
Soit f la fonction définie par f () = ———m——.
/ par f(#) = 5

1. Montrer que f est croissante sur [0, 1].
Représenter graphiquement les premiers termes de cette suite.

Démontrer que la suite (u,) est convergente et calculer sa limite.

1 1
2. Montrer que pour tout entier naturel p non nul on a : f (—) < el
p p

1
3. Montrer que pour tout entier naturel n on a : 0 < u,, < pay
n

Retrouver la limite de la suite (uy,).

On veut trouver dans les questions suivantes un équivalent de (u,).
1
= U, + 1+ —, montrer par

Un+1 Un,
récurrence que pour tout entier n supérieur ou égal a 1 on a :

4. En remarquant que pour tout entier naturel n on a :

1 "1
—Sn—l—l—i—Z—.
Uy, k:lk

1 Fodr
5. En utilisant l'inégalité — < / — valable pour tout entier k supérieur ou égal a 2
k=1 L

o

montrer que :

1
Vn>2—<n+2+Inn.

Unp

1
Déduire des questions précédentes que la suite (u,,) est équivalente a —.
n

Correction :
2. a/ Soit la propriété P (n) : "u, > 0.

11



Comme ug € |0;1[ la propriété P (0) est vraie. Supposons qu’elle soit vraie & un certain
2— . . .
rang n. On a u, 1 = “"u—uﬂ, le trinéme 22 — x + 1 étant toujours > 0 on obtient, avec u, > 0,

Ups1 > 0 donc P (n + 1) est vraie.
Conclusion : ¥Yn € N, u, > 0.

2
Pour tout entier naturel n > O on a t,;1—1 = up—2untl _ (“”_1) >0 donc’Vn e N, u, > 1‘

Un

b/ Pour tout entier naturel n on a : w,11 —u, = — — 1= e = < 0 d’aprés 2. a/ donc la
suite (u,) est décroissante. Comme elle est minorée par 1 elle est Convergente Soit [ sa limite.
En passant I'égalité u,,1 = u, + -- — 1 a la limite on obtient [ = [ + 7 —1soitl=1.

Conclusion : la suite (uy,) converge vers 1.

3. a/ Soit la propriété P (n) : 7 |u, — 1| < Jug — 1|* 7.

Pour n = 0 elle s’écrit : |ug — 1| < |ug — 1|20 soit |ug — 1| < |ug — 1|20 donc P (0) est vraie.

2
Supposons P (n) pour un certain entier n. On a |u,.; — 1| = W’;%”; d’apres ’hypothéese de

récurrence on a |u, — 1| < |ug — 1|2n donc |u,, — 1]2 < <|u0 — 1]2n> = |ug — 1|2n+1 et u, >1

on+l

donc 0 < ul < 1dou |"” e lup —1|" . On a donc |uyy — 1| < Jug — 1|2n+1 et la propriété

P (n) est vraie pour tout entier naturel 7.
Posons k = |ug — 1] € ]0; 1[ (car up € ]1;2[). On a |ug — 11> = 2" o=l or 271 g — 1| —

—o0 (car In|ug — 1| < 0) donc |ug — 1| = 2" w01l — (. L’encadrement 0 < |u, — 1| <
lug — 1|*" et le théoréme de étan montrent que |u, — 1| — 0 soit lil}r1 Uy, = 1|
n—-roo

b/ D’aprés la question précédente on a |u, — 1| < (%)2n pour tout entier naturel n. Pour

avoir |u, — 1| < 107'% i suffit d’avoir (l)Qn < 107 ce qui équivaut a 22" > 10 soit n > 6 (4

2
la calculatrice).

1. Par une récurrence évidente on a : Vn € N, u,, > 0.

u 1
On a pour tout entier naturel n, —=* = 5 < 1 (car 14w, > 1) donc la suite (u)

Un (1 + up)

est décroissante.

De plus elle est minorée (par 0) donc (u,,) est convergente.

Up, . )
———— on obtient [ = 5
(14 uy) 1+1)

qui équivaut a [ = I (1 + 1)*ou encore a 12 (2 + 1) = 0 soit [ = 0 ou l = —2. Comme la suite (u,)
est a termes positifs on a [ > 0 donc .
(14 up_1)’ 1 Qi + U2,

2. On a pour tout entier naturel non nul n, v, = - = =
Up—1 Un—1 Up—1

2 4+ u,_1. Comme (u,) tend vers 0 il en est de méme de (u,_1) donc .

1

n—

Posons [ = lim u,,. En passant a la limite dans w,,+; = ce

— 92 alors % <i) — 2 (d’apres le rappel) c’est a dire s — 1 ou

. . 1
— 1 ce qui équivaut a |z, ~ ot
n

3. Comme L —
Tn x

L

encore 2/n

La suite (z,) tend donc vers 0 "comme la suite 5-", c’est & dire lentement. Par exemple

on a xigo ~ 0,0049011, donc w199 est une valeur approchée 0 & 5.1072 prés alors que u; est une
valeur approchée de 1 & 1071 pres.

1. f,, est continue et dérivable sur D =R — {0, —1,...,—2n} et pour tout z € D :
/ 1 1 1
fn (ZL’) — __2 - —2 T e e . T —2’
= (x+1) (x + 2n)
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donc f, (x) < 0 pour tout x € D.
Sur | —oo, —2n| f, est continue, strictement décroissante et lim f, () = —a et lim2 fo(x) =

—00, donc f, induit une bijection de |—o0,—2n[ sur |—oco, —al. Comme 0 € |—o0,—al,
I’équation f, (x) = 0 a une unique solution sur |—oo, —2n|.

De méme f,, induit une bijection de chacun des intervalles |—2n, —2n + 1[,]-2n 4+ 1, —2n 4 2], ..

sur R donc ’équation f,, () = 0 a une unique solution sur chacun de ces intervalles. Enfin f,
induit une bijection de |0, +oo[ sur |—a, +00], donc I’équation f, () = 0 a une unique solution
sur |0, +o00].

En définitive I’équation f, (z) = 0 a 2n + 1 solutions sur R.

2. D’apres 1/ I'équation f, (z) = 0 a une unique solution sur ]0, 4-00].

3. Posons ¢ (z) = In(z+1) —In(z) — 5. ¢ est dérivable sur R* et Vo > 0,4’ () =

41"
1 1 1 _ z(el)—(e4+1)’4a : / _ (et —(z+1)’+2 1
o s T ey T (1) , soit ¢’ (x) = e i1) = sy < 0 pour x < 0. ¢
est donc strictement décroissante sur R, et comme IEIEOO@ () =0 (car ¢ (z) = In (»’CTH) — I_Jlrl)

alors : Vo > 0, (x) > 0, soit %H <ln(x+1)—In(x).
On démontrerait de méme que Vo > 0, In (z + 1) —In(2) < 1.
On a donc les encadrements : —5 <In(z+1)—In(z) < 1, 245 <ln(z+2)—In(z+1) <

) r+2
ﬁ,. s +12n <Iln(x+2n)—In(z+2n—-1) < ﬁ (en remplagant z successivement par
r+1,...,24+2n —1). En ajoutant membres & membres ces encadrements :
f()1+ < In(z+2n)—Inz < f, (z) + it
w(r)——4a n(r+2n)—Inx n () — a, soit :
x T +2n

1 2n 1
_Z (142" — .
fn () x—i—a < n( +x)<fn(:r:) x—i—2n+a

En remplagant x par z,, (> 0 =) dans ’encadrement on obtient, vu que f, (z,) =0 :

1 2 1
a——<1n(1+—n) <a———.

Tn Tn

2n
4. De la deuxieme inégalité de I’encadrement précédent on déduit : In (1 + —) < a, et
Tn

2n 2n

prenant 1’exponetielle (strictement croissante sur R) on obtient : 1+ — < €%, soit — < e®— 1.
n ‘ITL

Les deux membres étant strictement positif, en prenant I'inverse il vient : 22 > eﬂ;—ﬂ soit

Vn € Nox, > ef—fl
On a lim fﬁl = +00, donc, d’apres le théoréme de comparaison : | lim z, = +o00|.
n——+o0 € n—-+o0o
: 1 . e
5. Comme les suites a — — et ———— convergent vers 0 (car lim x, = +00), on a, d’aprés
T, Tp+2n n—-+o00
1 2n 1 . 2n
I'encadrement a — — <In(1+ — | <a————,| lim In{1+ — | = a/| (théoreme de
T Tn Tn + 2n° | n—+oo Tn
Iétau).
. 2n a . . n a . T : 2n
Onadonc lim (14 — ) =e% soit lim In— =e~1ou lim -5 = 1soit|z, ~ 75|
n—-o0o Tn n—-+4o0o Tn n—-400 ga _1 € -

1. La fonction f est dérivable sur [0, 1] (produit de fonctions dérivables) et :
Vo € [0,1], f' (z) = 2" (x + 1).

13
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On a donc : Yz € [0,1], f () > 0 donc f est strictement croissante sur [0,1].f étant
continue c’est donc une bijection de [0, 1] sur [f (0), f (1)] = [0, 2¢].

La bijection réciproque f~! de f est une bijection de [0, 2¢] dans [0, 1], continue, strictement
croissante.

2. L’équation ze®” = 1 est équivalente a f (z) = 2. Comme 2 € [0, 2¢], cette équation a une
unique solution « dans [0, 1] (’antécédent de 2 par f).

Comme f (0) et f (1) sont différents de 2 on a a € |0, 1].

3. Récurrence sur n. Soit la propriété P (n) : 70 < u, < 17.

Elle est vraie pour n = 0 d’aprés 2/.

Supposons P, vraie pour un certain entier n : 0 < u, < 1. La fonction f~! étant strictement
croissante sur [0,2¢] ona: f~1(0) < f~(u,) < f71(1). Or f71(0) =0et f~1 (1) €]0, 1] (voir
TV de f71) donc 0 < u,; < 1 et la propriété est vraie au rang n + 1.

Conclusion : la propriété P, est vraie pour tout entier naturel n.

4. a. Ona: Vre[0,1],f(zx) —x=2(2¢"—1). Pourx >0onae”>1donc2” —1>0
d’on f (x) —x > 0 pour tout z € [0, 1].

On a f(x) —x = 0ssi x(2¢" —1) = 0. Comme 2¢* — 1 # 0 sur [0, 1] c’est équivalent a
x = 0.

En remplagant z par wu, dans l'inégalité f(z) > z (possible car u, € [0,1]) on obtient
f (un) > uy, et en prenant I'image par f~! (croissante) il vient u,, > f~' (u,) = un41 . La suite
(uy) est décroissante.

4. b.Comme elle décroissante et minorée (par 0) elle est donc convergente.

Sa limite [ vérifie f~ (I) = [ (car f~! continue en ) soit f (I) = [ en composant par f, donc
[ = 0 d’apres la question précédente.

5. a. Par définition de w,, on a pour tout entier naturel n, f (u,;1) = u, S0it 2u, e+ =

1
2

Uy, OU | Upa1 = s5Upe “nFL|

. -5 . . _
5. b. Soit P, : u, = S%.—. P, est vraie car ug = a et ae® = 1 soit o = e~ .
2
Supposons P, vraie pour un certain entier n on a : u,;; = %
—Sn _ N . —Sn—unt1 —Sn+1 :
%e s—e "1 (hypothese de récurrence) ou : upy1 = “Fr— = S et Poyy est vraie.

Conclusion : la propriété P, est vraie pour tout entier naturel n.

Upe "7t Soit Uy, =

5. c¢. Comme pour tout entier naturel n : u,,; > 0 on a e “+* <1 donc %une_“"+1 < %un,
soit U, < %un

2 s , . n
Par une récurrence évidente on en déduit que : |Vn € N, u,, < (%) .

n
En sommant les inégalités u; < (%)k pour £ = 1,2,...,n on obtient : S, = Zuk <
k=0

n

n+1
Z (2%), soit S,, < % (somme des termes d’une suite géométrique de raison 1/2), donc

k=0 .
S.<2-(3)"

On en déduit : Vn € N, S, < 2. La suite (5,,) est donc majorée. De plus elle est croissante
(Sp+1 — Sn = uy, > 0) donc la suite (S,,) est convergente.

Pour tout entier naturel n on a o = Sy < S, < 2, et en passant a la limite (n — +00) il

5. d. Onalu, = &—

(car e=5» converge vers e L).

14



1. L’application ¢,, est continue sur R, (fonction polynéme) strictement croissante (car
¢ (z) =nz"t+...4+1>0). Deplus ¢, (0) = —1 et mgrilmwn (x) = 400. D’apres le théoréme
de la bijection ¢,, est une bijection de R, sur [—1, +00[ donc I’équation ¢,, () = 0 a une unique
solution z,, sur R (lantécédent de 0 € [—1, +oo] par ¢,,).

Comme pour tout entier n, ¢, (0) <0et ¢, (1)=n—1>0onauz, €|0,1].

On a immédiatement . xo est la solution positive de ’équation 22 + x — 1 = 0 soit

—145
=)

Ty =

2. Pour z € ]0,1] et n € N*, on a ¢, (z) — ¢4 (@) = 2" — 2™ = 2™ (z — 1) < 0, soit
fo (2) < fosa (2).

En remplagant z par x, (€ ]0,1]) on en déduit que 0 = ¢, (z,) < ¢, (z,) ou encore
Oni1 (@ng1) < @ppq (@) (car ¢, (2ny1) = 0). Comme la fonction ¢, est strictement crois-
sante on en déduit que z,, 11 < x,, donc la suite (z,,) est décroissante.

Comme elle est minorée par 0 alors elle est convergente.

3. Comme la suite (z,,) est décroissante on a 0 < z,, < x5 pour n > 2 donc : 0 < 2" < z7.
Or z5 € [0,1] donc 2y — 0 et (z') tend vers 0 d’apres le théoréme de 'étau.
n—-+4o00

4. Pour n € N*, z,, est solution de I'équation ¢, (z) = 0 doncon a 2" +z" ' +...+z, = 1.

gt U
Or " +a2" '+ ... +uz, = fa=fn— sin > 2 (somme des termes d’une suite géométrique de

= 1soit |z, (1 — ') =1 — x, | (cette relation est valable aussi sin =1

1
o

raison z,) donc 4=

car x1 = 1).

Soit [ la limite de la suite (x,). En faisant tendre n vers I'infini dans la relation précédente

il vient (d’aprés 3/) : I =1 — [ soit |l =limz, = 1|

5. D’aprés 4/ ona x,—a™ = 1—x, soit z'*! = 2z,,—1 pour n > 1. Comme z,, = 1 (1 +¢,,)
il vient 5t (14+¢,)""" =¢, ou|Vn € N*, (1 +¢,)"" =27t |
En prenant le In des deux membres : (n+1)In(1+¢,) = (n+1)In2 + Ine, soit, en

multipliant par ¢, |Vn € N*, (n+1)e,In(14+¢,) = (n+1)e,In2+¢,1ne, |

6. D’apreés la relation précédente on a (n+1)e,[In2 —1In(1+¢,)] = —¢,1lne,. Comme

gn — Oonaeg,lneg, — 0. De plusIn2 —In(1+¢,) — In2 donc|(n+1)e, — 0}

On écrit (1 4 &,)" " = et 4en) Ona (n+1)In(1+¢,) ~ (n+1)e, (carln (1 +¢,)

e, puisque &, tend vers 0) donc (n + 1)In (1 + &,) — 0. Il s’ensuit que liril (14+e,)" =1|

1
gn ~ on+1 |

7. Dapres 7/ (1+¢,)""" ~ let (14¢,)"" =2"¢, (5/) donc v

n—-+o0o

Il existe donc une suite 5;1 tendant vers 0 telle que ¢, = QTL% (1 + 6;1) pour n assez grand,
soit 7, = 2 (14¢,) =31+ 55 (1+¢,)) ou|z, =2 (1+ 357 + o (557)) |

8. a. La fonction f est continue, dérivable sur I = [1.1] et f'(z) = —ﬁ < 0 sur
cet intervalle, donc f est strictement décroissante sur I et donc f ([%, 1}) = [ f,f (%)} =
3.3 € [3:1]-

b. Par une récurrence évidente on a, d’aprés 8/ a/ : Vp € N, u, € [%, 1].

« étant solution de I’équation ¢, () =0 on a a? +a — 1 = 0 soit a = 14+a = f(«).

On écrit alors, pour tout entier natuel p, |uyr1 —af = |f (u,) — f ()] = 1+1u,, - IJ%Q , Soit
|up1 — ] = (14]3;% Oru, > 1 (8/a/)donc 1+u, > 2 et 1+a > 1donc (1+u,) (1+a) >
2 soit m < 2. Onadonc: |VpeN,|up —af <32 u,—all
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c. Par une récurrence facile (ou un procédé "en cascades") on déduit de 'inégalité précédente
que, pour tout entier naturel p, 0 < |u, — af < (2)" |ug —  soit 0 < [u, — | < (2)° |1 —al.

Comme (2)” converge vers 0 (car 2 € [0,1[) on a hr+n lup, —a| =0 soit | lim u, =«
p——+00

3 p——+o00

@Partiel
1. Pour t réel et k entier tels que 0 < k<t <k+4+1onal< k+1 <

1
t
entreketk+111v1entfk+1£< k+1ﬂ<fk+ldt sotkﬂg k“%g

k+1 — Jk t
k+1 gt
*
vkeRI’k-ﬁ-l—k t |

< %; en intégrant

1 . .
1 et en particulier

n
2. En sommant les inégalités précédentes pour £k = 1 & n—1 on obtient y, —1 < / % =Inn
1

donc on a |y, <lIn(n)+ 1 pour n € N*|.
Partie 2.

3. D’apres le graphique il semble que la suite (z,,) soit croissante et tende vers +oo.

4. Par une récurrence aisée on a z,, > 0 pour tout entier naturel n d’ot x,,41 —z, = xl > 0.
n

La suite (z,) est donc strictement croissante. Elle a donc une limite [ € RU {+o00}.

Sil € R on aurait, en passant ’égalité =, = =, + xin ala limite : [ =1+ %, soit % =0 ce

qui est impossible. On a donc |lim z,, = 400 ‘

2
5. Pour tout entier naturel k on a x3_, — 2} = <:13k + i) —xi =2+ é

[y

ne
En sommant ces égalités de k = 0 an—1 il vient, aprés simplifications : 22 —z2 = 2n+ I%

k
0

i

n—1
Comme 7y = 1 on a donc : VnEN*,xi:2n+1+Z$%.
k
k=0

6. D’aprés D'égalité précédente on a : Vn € N* 22 > 2n, donc x, > v/2n. Comme la suite
(\/ 2n) tend vers +oo on a, d’apres le théoreme de comparaison lim x,, = +oc.

7. Comme xz > 2k pour k > 1, on a-z L § 1 et en sommant ces megahtes dek=1an—1on

n—1 n—1 n—1
obtient éﬁ > =3 < 3(ln(n—1)+1) (dapres2/) sth%S% n(n—1)+1.
k=1 k=1 k=1
n—1
En ajoutant 1 aux deux membres : S <iln(n—1)+2
k=0
5 1 -1
Il résulte alors de la question 5/ que : |Vn € N* 22 < 2n + 3 + % _

8. D’aprés 5/ on a Vn € N* 22 > 2n + 1 et d’aprés la question précédente on déduite
I’encadrement : - .
Vn € N*,2n + 1 gxi§2n+§+#.

En divisant par 2n (> 0) et en prenant la racine carrée il vient : ¥n € N* /1 + % <

8
S

< \/1 + % + %. Comme 21—, 0 on obtient, d’aprés le théoréeme de 1’étau :

m 4n n—-+4o0o
\%LTL n:; 1 c’est a dire que | (z,) ~ v2n|.
Partie 3.

9. Soit la propriété P, : u, > 1. Py est vraie car ug = 3/2.
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. . . , 2 _Qu,+1 n—1)2
Si P, est vraie pour un entier n fixé, on a u,,1 — 1 = u, + UL — 2=t t— (”u S >
(car u, > 0), donc u,.1 > 1 et P,y est vraie.

D’apres le principe de récurrence la propriété P, est vraie pour tout entier naturel n.

D’autre partona: Vn € N, u, 1 —u, = L_1= % < 0 donc la suite (u,,) est décroissante.

Un
De plus elle est minorée par 1 donc elle est convergente et sa limite [ est supérieur ou égale a
1. En passant a la limite dans u,,1 = u, + UL —1 on obtient : { =1+ % —1 soit ’l =limu, =1|

2
10. D’aprés 9/ on a, pour tout entier naturel n, u,,; —1 = (“"u;l) < (uy, — 1)2, car u, > 1.

1 1
Soit la propriété P, : u, > |u, — 1| < oo Py est vraie car |ug — 1| = % et o = %

Si P, est vraie pour un entier n fixé, on a |up1 — 1| < (u, — 1)* et d’aprés Uhypothese de

2
, 2 1 1 1 1 1
récurrence on a (u, —1)° < (2?> — (22”)2 = stz = g donc |y — 1| < ST €t la

propriété est vraie au rang n + 1.

D’apres le principe de récurrence la propriété P, est vraie pour tout entier naturel n.

1 n .
Pour avoir |u, — 1] < 107% 4l suffit donc d’avoir 5 < 107 soit 22" > 10°. A la calculatrice

on trouve n = 5. Il semble donc que la suite (u,,) converge rapidement vers 1.

< . —1 1 n n
11. D’apreés 10/ on a, pour tout entier naturel n, % < o On a a"2%" = enina+2"In2
a

et nlna+2"In2 = 2" (In2 + 22e) o Foocar g — 0 donc a"2?" — oo et ot g

On a donc

un, — 1| = 0(a"™) | quand n tend vers +oc.

1. Par une récurrence immédiate on voit que x,, > 0 pour tout entier naturel n.

2 _9p +1 . —1)?
PourneNona:xn+1—1:1:$’;($nx+$ :2(92%+)1) > 0. On a donc :

’VnEN*,xn > 1‘.

Remarque : il est inutile de raisonner par récurrence.
2. Etudions le sens de variation de (x,,). Pour tout entier naturel n on a :
2 +3
Tpt1 — Ty = ——— —&
n+1 n 2 (xn + 1) n
—x2 — 2z, +3
2(x, +1)
Les racines du trindme —z% — 2z + 3 sont —3 et 1 donc ce trinéme est négatif pour x > 1.
Comme z,, > 1 pour n > 1 on a donc —:ci — 2z, + 3 <0 soit 41 — 2, < 0 pour n > 1.

La suite (z,,) est donc décroissante a partir de n = 1.

Comme elle est minorée par 1 elle est donc convergente.

SCQ + 3 l2

n : _ +3
CYPREED) @t 1) on obtient [ = 501
(la suite (x,,1) tend vers [ car c’est une suite extraite de (x,)). On obtient 2[* 4+ 2] = * + 3
soit 124+ 2] —3 =0. Onadonc! = —3 oul = 1. De plus x, > 0 pour tout n et par passage &

la limite on a ! > 0. Finalement on a .

Soit [ sa limite. En passant a la limite dans la relation z,,,; =

n_l ? n_l

3. La calcul du 1/ donne, pour n > 1, |z, — 1| = (@ ) — zn — 1] (car
2(@n+1)|  2(zn+1)

x, > 1). DeplusOﬁxn—lgxnetQ(xn—i—l)22$ndonc0<m§%ﬂ.
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T, — 1
2(x, +1)
On a donc : |z,41 — 1] < 1 |z, — 1| pour n > 1 (cet encadrement est vrai aussi si n = 0).

<

N[ =

En multipliant membres & membres on obtient : 0 <

Par une récurrence facile (ou un raisonnement "en cascade") on en déduit que :
1 n
VneN |z, -1 < (=) .
2
1

Comme (1)" — 0 (suite géométrique de raison 2 € ]—1,1[) on a, d’aprés le théoréme de
I'¢tau, |z, — 1| — 0, soit .

®11. La fonction f,, est continue et dérivable sur R (fonction polynéme) et pour tout réel
z, fi () =nz" ' —n =n(z""'—1) <0 pour x € [0;1]. D’aprés le théoréme de la bijection
fr induit une bijection de [0; 1] sur [f, (1); f (0)] = [2 — n;1]. Comme 0 € [2 — n; 1] 'équation
fn () = 0 a une unique solution z,, sur I'intervalle [0;1].

Pour tout n >2onal0 <z, <1.

2. Pour tout z € [0;1] et n > 2on a f,11(x) — fu(z) = 2"t —2" —z =2" (z — 1) — x.
Comme 0 <z <1l,onaz—1<0donc f,i1(z) — fn(z) <0 pourz € [0;1] et n > 2.

En remplacant = par z,, il vient : f,11 (2,) < f (2,), soit fni1 (2,) < 0 (car f, (x,) = 0)
ou encore fpi1 () < faoi1 (Tne1). La fonction f,1 étant strictement décroissante sur [0;1] il
s’ensuit que x,, > x,41 pour n > 2 donc que la suite (z,),,, est décroissante. Comme elle est
minorée par 0 elle est donc convergente. -

41
n

3. Pour n > 2 la relation f, (z,) = 0 s’écrit 2 — nz,, + 1 = 0 soit z,, = . Comme
n

xnﬁlonaﬁngldoncﬂgg. Onadonc: |VneN,n>20<z, < 2|
n n n n

4. D’apres 'encadrement précédent et le théoréme de ’étau on a : limx,, = 0.

D’aprés 3/ on a nx, = 1+2" pour n > 2. Or 2" = "M% et nlnz, — —oo (car x, — 0)

donc z]! — 0. On a donc nz,, — 1 soit f/—”n — 1 ou encore |z, ~ +|.

n

5. a. Pour n > 2 on a ny, = nx, — 1 = 2" — 0 d’aprés 4/ et ny, = na" = et QO

Inn+nlnz, =n (h‘T" —ann) — —oo (car an — 0 et Inx,, — —o0) donc .

De méme, pour n > 2, ny, = 2"t ot 2Inn + nlnwz, = n (322 +Inz,) — —o0

donc [n?y,, — 0.

nln(yn-‘r%) — lenln(nyn—i-l)—nlnn — 1_"_1 enln(l—i—nyn).
n

nn

b. Pourn > 2,onay, = +a" = Lerlhan = 1o
) nn n n

Quand n tend vers +o0o on a In (1 4+ ny,) ~ ny, (car ny,, — 0) donc nln (1 + ny,) ~ n?y,.
Comme n’y, — 0 on a nln (1 + ny,) — 0 donc e"™+mm) — 1 soit y, ~ —L.

C’est équivalent a I'existence d’une suite (&,,) convergeant vers 0 telle que y,, = # (1+4+¢,),

. 1 1 1, 1 1 1 1
soit 2, — = —=1 (1 +&,), ouencore z,, = ~+—=+-"27. Onadonc|z, = - + =5 + 0 (W) )

n nn n

1. Pour tout entier naturel n on a :

Uy + Up, 2, Uy, (uy, + 1)7%)2 — dupv,  (uy — Un)2
Uptl — Upal = - = = )
1 1 2 Up + Uy 2 (up, + vp) 2 (uy, + vyp)

Montrons par récurrence la propriété P, : "u, > v, > 0.

La propriété est vraie au rang n = 0.

Si P, est vraie pour un entier n fixé, alors u, 1 = % >0et v, = % > 0. Le calcul
précédent donne alors u,.1 — v,+1 > 0 donc P, est vraie.
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D’apres le principe de récurrence la propriété P, est vraie pour tout entier naturel n :

vn € N,u, > v, >0|

. Up, + v Up — U R
2. Pour tout entier naturel n on a : u,;—u, = %—un = % < 0 d’apres 1/ donc
. o . 2y Uy, 2up vy — Uy (U + vy)
la suite (u,) est décroissante. De méme on a v,11—v, = ———— —v,, = =
) Up + Uy Up + Upn
UpUpy, — U . Up, (Uy, — Uy, . . .
——— 80t Uy — V, = Q > 0 d’apres 1/ donc la suite (v,) est croissante.
Uy + Uy Up + Uy

D’aprés 1/ on a donc, (u,) étant décroissante te (v,) croissante : Vn € N, 0 < vy < v, <
un < ug. La suite (u,) est décroissante et minorée (par 0 ou vy) donc elle converge. De méme
la suite (v,) est croissante et majorée (par ug) donc elle converge.

Posons [ = lim u, et I’ = lim v,. En passant & la limite dans I’égalité u,,; = “";“’" il
n—-+4o0o n—-+4oo

vient (vu que (u,41) tend vers l) : [ = % ce qui équivaut a 2l = [ + " soit [ =1'.
Remarque : les suites (u,) et (v,) sont donc adjacentes.
Up + Uy 2Upvy,

3. On remarque que pour tout entier naturel n : ;110,411 = SR = u,v,. La
un 'Un

suite (u,v,) est donc constante et on a : Vn € N, u,v,, = ugvy = ab.

En passant a la limite on obtient : [* = ab et comme [ > 0 (car Vn,u,, > 0) on a|l = Vab|.

4. Pour tout entier naturel n on a u,, + v, > v, > vg=1donc 0 < ——— < 1.
Up + Un

(un—”U'n,)2 (un_vn)2

On a donc St = 5

soit, d’apres le calcul du 1/ {Vn € N, |uy11 — vy <

On montre par récurrence la propriété P, : 7 |u, — v,| < ———

La propriété est vraie au rang n = 0 car |ug — vo| = 1 et 291 = 50 = 1.

. . . 1
Si P, est vraie pour un entier n fixé, alors |u,, — v,| < —— YR - et en élevant au carré les deux

1 \? 1 1
. 2
membres il vient : (u, —v,)” < (W) = P — e

(un - vn)2 1 1 1 cs4z
5 < 5 9B HTE = ST donc la propriété P, est

On a alors : |upy1 — Va1 <
vraie.

D’apres le principe de récurrence la propriété P, est vraie pour tout entier naturel n.

Du fait de 'encadrement v, <1 < u, on a |u, — | < |u, — v,| et |v, — | < |u,, — v,|, donc

ainsi que |v, — | < ——

pour tout entier naturel n on a |u, — | < —— < seT

= o
1
Pour avoir |u, — | < 107'° (ou |u, — ] < 10719) 4 suffit donc d’avoir —— 57T < 10710,

La calculatrice donne : n > 6.

Les réels ug et vg sont donc des valeurs approchées par exceés et par défaut respectivement
de v/2 4 10719 pres.
M0 ] Question préliminaire : on peut raisonner par récurrence ou remarquer que la suite
1 - L S
—k est la somme des termes consécutifs de la suite géométrique (5) de raison 5 donc :



1. Raisonnons par récurrence. Soit la propriété
n
P, :"Vxy, 29, ..., x, éléments de [0, 1] ,H (1—z;)>1-— sz .
=1

Initialisation : Py s'écrit Vo, € [0,1],1 — 21 > 1 — 7 donc P, est vraie.

Hérédité : supposons la propriété P, pour un entier naturel n fixé et montrons que P, est
vraie.

Soient des réels x1, s, ..., x, 1 de intervalle [0, 1]. D’aprés ’hypothése de récurrence on a

1 =1

En multipliant les deux membres de I'inégalité par le rées (positif) 1 — 41 il vient :

H (1—xz) (1 —2zpyq) > (1 — Z:m) (1 —xpq1), soit :
=1 =

n

1=

n+1 n+1
[[a-=2) > 1—23:2 xn+1+$n+lzmz—1_sz+xn+1zxz
i=1
n n+1 n+1
Comme les x; sont positifs on a z,41 > x; > 0donc [[ (1 —2;) >1— > x; donc P, est
i=1 i=1 i=1

vraie.
Conclusion : la propriété P, étant vraie pour n = 1 et étant héréditaire elle est vraie pour
tout entier naturel non nul n.

2. Pour tout entier naturel non nul n on a :

Suet _ 1

2 s < L

Comme la suite (.S,,) est & termes strictements positifs on en déduit que (.5,,) est décroissante.
De plus cette suite est minorée par 0 donc elle est convergente.

1
3. Pour tout entier naturel non nul n on a 1 — o € [0, 1] donc on peut appliquer I'inégalité

de la question 1/ (avec z; =1 — ) et on obtient :

"1
VneN*,Sn21—Z§.

1 1 no1 1
Or Z — =1 — — (question préliminaire) donc 1 — > — =1 — <1 - —) = — d’ow:
n i1 22 n

1

Vn e N, S, > TR
4. Considérons la fonction f définie par f (x) = In (1 — )+ pour z € [0,1[. f est dérivable
sur cet intervalle (somme et composée de fonctions dérivables) et : Vo € [0,1[, f' (z) = 7=+1 =
= < 0 sur I'intervalle [0, 1] donc f est décroissante sur cet intervalle. De plus f (0) = 0 donc

f( ) <Osur [ soit: |Vre[0,1],In(l —z) < —x|
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n 1
PourneN*ona:lnSn:lnH(1——) Zln(l—z—k)

k=1

1 1
D’aprés 4/ on a, pour tout entier k € {1,...,n} : (1 - ?) < Tt En sommant ces

n

1 1
inégalités pour £ = 1,...,n il vient : Z In (1 — —) < - Z =—1 —|— — (d apres la ques-

ok
k=1
1 1 n 1
tion préliminaire). Comme n > 1 on a 2" > 2 donc on < 3 et doncIn S, = > In (1 — 2—k> <
k=1
1+ L1
2 2

En prenant I'image des deux membres par la fonction exponentielle (croissante sur R) on
obtient :

1
S, <eM?2=_—|
~e€ \/E
. . 1 1
Autre fagon : la suite (S,,) étant décroissante on a : Vn € N*, S, < S;. Or S; =1— 353

1 . . .
et 3 < e /2 (car c’est équivalent & }L < el ou4 > e quiest vraie) d’ou S, < e /2,

1
On a donc 'encadrement : Vn € N*, on < S, < e /2. En "passant ’encadrement a la

limite" on obtient : |0 < lim S,, < e~ /2|,

MI71. Soit la fonction gpk définie sur R par ¢ (z) = arctanx — x + k7. ¢, est dérivable sur
R et o}, (v) = 5 +$2 —1= , donc ;. est strictement décroissante sur I'intervalle
|km, 5 + kn[. De plus ¢ (lm) = arctan(lm) > 0 et ¢, (5 +kr) = arctan (5 +kr) — % <0
(car pour tout réel z, arctanz € ] oTh] D D’apres le théoreme de la bijection, ’équation
¢ () = 0 a une unique solution z;, sur Uintervalle |km, 2 + kx|

2. Pour tout k£ € N* on a arctanz, = x, — kw. Comme z, — 400, on a arctanx, — =

2
donc lim (z) — km) = 7.
k—+o00

3. Pour tout k € N* on a : krm < x, < § + km, donc arctan (kr) < arctan (z;) <
arctan (5 + km) (la fonction arctan étant strictement croissante sur R). Comme arctan z

x, — km on obtient arctan (km) < xj, — km < arctan (% + km), donc I — arctan (% + km) <
T — (w — km) < 2 — arctan (k7), et compte tenu de la relation I — arctan (z) = arctan (1) il

vient : |Vk € N*, arctan (W) < 74 < arctan () |

4. En divisant les 3 membres de l’encadrement précédent par arctan (1/km) on obtient
arctan(1/(k+1/2)m) Th
arctan(1/km) — arctan(1/km)

< 1. Quand k tend vers I'infini le membre de gauche est équivalent

a 1/(!3# (car arctanz ~ x en 0), soit a ¢ +1 #7173 donc il tend vers 1. D’aprés le théoréme de
étau on a donc lim Pk = 1, soit 74 ~ arctan (1/km). Or arctan (1/km) ~ 1/km, donc
T ~ 1/km|.

I existe donc une suite () convergeant vers 0 telle que 7, = 1/kmw (14 €y), soit 7 =
= +o0(3), ouencore: I — (xp —km) =L +0(}),so0it |z, =kr+3—Z=+o0(3)|
donc Vo € R%,0 < f'(x) < 0y,

5. Pour tout réel z > 0 on a f'(z) = L <

1
1+ (z+km) 1+k2m2)

avec 5k = m € [O, 1[
6. On montre d’abord par récurrence sur n la propriété P (n) : "u, < 0;”.
C’est vrai pour n = 0 (car ug = 0 et 6 > 0).
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Si P (n) est vraie pour un entier n donné on a u, < 6 donc f(u,) < f(0x) car fi est

croissante sur R, donc u, 1 < 0 et la propriété P (n + 1) est vraie donc P (n) est vraie pour
tout entier naturel n.

D’autre part écrivons : 6 — u,1 = f (0x) — f (uy).

La fonction f est dérivable sur R donc, d’apres le théoréme des accroissements finis appliqué
a f sur lintervalle [uy, 0], il existe ¢, € Juy, O] tel que f(0;) — f (un) = f (cr) (O — un).

Comme f (¢x) < 0 on en déduit que f (0r) — f (un) < 0k (O — uyp,).

En définitive on a : |Vn € N0 < 0y — uyr1 < 0p (0 — uy) |

Classiquement (par récurrence ou par une "cascade") on en déduit :
Vn e N0 < 0 — u, <8y (0 — ug) .

Comme d;, € [0,1[onad;, — 0donc, d’apres le théoréme de 'étau, on a 0, —u,, — 0,

n—-—+o00 n—-s—4o00

soit | lim w,, = 0, |
n—-+o0o

M211. (i) Soit la propriété P (n):” (1 —a)" >1—na’.

Initialisation : P(1):”7 1 —a > 1—a” qui est vraie.

Hérédité : supposons la propriété P (n) vraie pour un entier n donné : (1 — )" > 1 — na.
Montrons que P (n + 1) est vraie. Ona: (1 —a)"™' = (1-a)" (1 -a).

D’apres 'hypothese de récurrence on a (1 — )" > 1—na donc (1 — a)" (1 — a) > (1 — na) (1 — )

(car 1—a > 0) soit : (1 —a)"™ >1—na—a+na®>1—(n+1)a (car na® > 0). La propriété
P (n+ 1) est donc vraie.

Conclusion : d’apres le principe de récurrence la propriété P (n) est vraie pour tout entier
n € N*.

(ii) Pour n € N* on étudie les variations de la fonction f définie par f (z) = (1 — x)" —14nzx
sur |0, 1[.

Ona f(r)=-n(1-2)"'+n=n[l-(1-2)""] pour z €]0,1].

Comme z €]0,1[ona 0 <1—z < 1donc (1—xz)""" <1soit f/(z)>0sur]0,1].

La fonction f est donc croissante sur |0, 1[ et comme f(0) =0 on a f (x) < 0 sur |0, 1], ce
qui démontre I'inégalité.

1 n+1
2. Pour tout n € N* on a : M (1+_) . I

(1+5)"
(1(4;1—?;;”“ - (1 * ni 1) (Tl?)

On écrit : n2 +2n = (n+1)> — 1 d’on

2" = (1 + —) (H"“)n, soit :

n+1 1+2
1 n?+2n\"
1+ 5
n+1 (n+1)
1 n
(1 + n_+1) (1 - (n+1)2>

3. D’apres la question 1/ on a : <1 — W) >1- ﬁ, donc, d’apres 2/

S (o) ()

1 . n 1 n 1 n 1 _ n(n+l)—(n+1)2+n - 1
Or (1 + n+1) (1 (n+l)2> =1 (n+1)? T (n+1)2 1 (n+1)? =1+ (n+1)° > 1.
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1
Finalement on a Vn € N* %
(1+3)"

>n+1

> 1, soit “** > 1 donc la suit (u,) est croissante (car

elle est a termes strictement positifs).

4. D’aprés 1/ on a : VnEN*,(l—Zi) > 1—%:%, donc —=% k < 2.

1 n
Il s’ensuit que Vn € N*, u <2 (1 — ) < 2.

(1-2:)"

_ ) —
Comme (1—1—%)":((114—72))71011ad0n0 VnEN*,(l—l—%) <2\
“an

En élevant les deux membres (positifs) au carré il vient : Vn € N* (1 + %)% < 4, soit
Uoy < 4.

Pour tout entier naturel non nul n on a u, < wug, (car (u,) est croissante) donc Vn €
N*, u, <4.

La suite (u,) est donc majorée; comme elle est croissante la suite (u,,) est convergente.

r—x 1'2
1. Pour tout réel positif ou nul on a | f (z) — x| = 131;; ) ' = 1_7_12. Comme 1+22 > 1
on a 1+w2 < 23

On adonc: Vr > 0,|f (z) — z| < 23. Ce qui s’écrit aussi |Vz > 0,2 — 2% < f(2) <z + 23

n
2. Pourl1<k<nonal gk3gn3etensommantdek:1anonobtientn§2k3§n4,

k=1
st >
don 0 < =— < % D’aprés le théoréme de I'étau on a |lim +=4

3. D’aprés 1. on a pour 1 < k < n, % — (%)3 <f (T%) < 7% + (%)3 En sommant ces
inégalités de kK =1 a n il vient :

n n
3 1
E ko g (£) <, < E = (£)”. Comme E k= ") cet encadrement
n n2 n 2
Zk3 st
Y hapid .« Nl n+1 k=1 PR 52 BEE 1
s'écrit : T ——5— <, < T 5 . et le théoréme de I'étauon a : |limu, = 3|.

st
1

4. D’apres I'encadrement précédent on a pour tout entier naturel non nul n, 5~ — +=75

oy >
st 2K st
n2(n+1)32

U, — & < 5=+ *=%— et en divisant par 5- il vient : 1 — 22=%— < 2n (u, — 3) < 1+ 2+%
5 — 0 (rapport des termes de plus hauts degrés) donc, d’aprés le théoréme

n
>
T k=1
1 1 1

de I'étau, 2n (un — 5) — Isoit : |uy, — 5~ 5-|.

1. En multipliant le numérateur et le déonominateur de u,, par 2 x 4 x 6 X ... X (2n)

on obtient : u, = ——' __ Or2x4x6x...x (2n) =2"n!, dot |u, = 2!

[2x4x6x...x(2n)]? 22n (p!)?
L Unt1 2n42)! 222 (2n42)(2n4+1)  2pn
2. Pour tout n > 1 on a : uzl = 22“(27(1(7131)!)2 X (2(:3!) — 4(n)i17;2 ) — %ni} Comme

2n +1 < 2n +2, on a “* < 1. La suite (u,) étant a termes strictement positifs elle est
strictement décroissante.

Comme elle est minorée par 0 elle est convergente.
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2
3. Pour tout n > 1 on a : = = <M) nid Ot nt2 ) 2n+1)* (n+2) —

Un Un n+1 4(n+1)% n+1"
4(n+12(n+1)=-3n—2 <0 donc il < 1. (vy) est donc décroissante, et comme elle est
minorée par 0 elle est convergente.

2n 2n
4. a. On a : 1:[ (1 — %) = 1:[ % = %% ..... 2’2‘;1 = %, apres simplifications.
17 1\2 _ 171 1 1 1 1
b. Onaui—zkl:g(l—ﬁ) —Zkl:lg(l—ﬁ) (1—ﬁ)0rﬁ§2k 1,dOHC1— >1 2k 17

n 2n
donc a2 4T (1= ) (1- ) =1 1T (- 1),
= =2
D’aprés la question précédente on a donc : u? > L.
Pour tout entier naturel n > 1 on donc : (n + 1) u? 2 > ”*1 , soit v, > "L

4an
En passant a la limite quand n tend vers I'infini on dedult hm Uy > Z’ donc C' = limv,, > 0.

5. D’aprés 4/ on a : lim (n + 1)u2 = C, donc lim v/n + 1u, = vC # 0, ce qui équivaut &
; vc o, £
\/n—l—lunw\/a, soit Un ~ 5 ™~ e |

1. @Zx@%ZxQQZmz—x—lg(). Le trinéme 222 — 2 — 1 a 1 pour
racine évidente, I'autre valant f% (produit des racines = £ :f%), donc 22?2 —x — 1 < 0 pour
z € [—3,1] et en particulier sur [0, 1]. On a donc /4% > z pour tout z de [0,1].

Montrons par récurrence la propriété P (n) "0 < x, < 1".

P (0) est vraie car g € [0, 1].

Supposons P (n) vraie pour un entier n donné. On a donc 0 < z,, < 1, donc 0 < HT“” <1,
donc (la fonction racine étant croissante sur R ), 0 < /22 <1, donc P (n + 1) est vraie.

Conclusion : d’apreéd le principe de récurrence on a, pour tout entier naturel n, 0 < z,, < 1.

En remplacant = par z,, dans I'inégalité ,/ 1“" > x on obtient z,41 > z, donc la suite (z,)
est croissante. Comme elle est majorée par 1elle est convergente.

Soit [ sa limite. En passant a la limite x,, {1 =

I on obtient, la suite (2,,11) convergeant

vers [ et la fonction f étant continue en 1, [ = f (I). Comme précédemment on obtient 2% —x —
1=0,s0itl=10ul= —%. La suite étant & termes positifs, on a [ > 1, donc ’l =limz, =1 ‘

2. Pour tout entier naturel n on a : |z,41 — 1| = ‘,/% - ‘

14x
M) Jaa—1]

‘\/mH’ 3 V=]

Minorons le dénominateur : comme z,, > 0 on a % + 1 > 1, donc, en prenant 'inverse

b < L dou [V € N oy — 1] < o — 1)
2
Par une récurrence facile on obtient : VYn € N, |z,, — 1] < ( % )n 0 — 1.

Comme % € |-1,1], la suite (%)n converge vers 0, donc (%)n |zo — 1| aussi.

CommeVn € N,0 < |z, — 1| < (3)" |zo — 1|, on a, d’aprés le théoréme de I'étau, |z, — 1| —
0 et on retrouve que limzx, = 1.

3. a. On a, pour tout réel x, cos (2z) = cos? (z) — sin® (), et compte tenu de la relation
cos? (x) + sin? () = 1, on obtient |cos (27) = 2cos? (z) — 1|.

b. Montrons par récurrence que pour tout entier naturel n on a x,, = cos (2%)
Soit P (n) la propriété "z, = cos (&)".

La propriété P (0) est vraie : zo = cos («).
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Supposons P (n) vraie pour un entier n donné : x,, = cos (%)

On a donc : x,41 = % La relation du 3/ a/ s’écrit HLS(QQJ) = cos? (z) pour tout
réel x, donc M = cos (2‘l ) (en prenant x = Z,j%), et x,.1 = y/cos? (2n+1) = cos (2n+1)
(car 537 € [(), g], donc cos (Tﬁil) . La propriété P (n+ 1) est donc vraie.

Conclusion : ¥n €, x, = cos (—)

Quand n tend vers l'infini, 3 converge vers 0, donc cos (2n) — cos (0) = 1, car la fonction
n—-+

cos est continue en 0. On retrouve que (z,) converge vers 1.

Uni1 +1/2 5+ 6u, +3

16| 1. Pour tout entier naturel n on a : v, = = = , soit
th Upy1 + 1 gzn+é +1 8uy, + 8

3 u,+1/2 3

v = —.Up.
T T, +1 4"
La suite (v,,) est donc une suite géométrique de raison 3/4.

1/2 1 1 /3\"
Comme vy = M =—,onalv, =—. (—> pour tout n € N.

w1 2 2\ 4
nt+1/2 1 1
2. Onavn: Un / — unvn+vn:un+_ — un(vﬂ_l) = _Un+—- Comme
Uy + 1 2 2
—v,+1/2 =20, +1 — (3" +1
v, # 1 pour tout n on a : u, = Unt1/ s , soit |u, = (4,)1
v, — 1 20, — 2 (%) —9

Comme (v,) converge vers 0 (suite géométrique de raison 3 € |—1,1[), il s’ensuit que

limu, = — |
1m u 5

1. Soit P (n) la propriété ”Z m =1- n+r1"-

k=1
Initialisation : P (1) est la propriété 1 +1) =1 — 3 qui est vraie.
Hérédité : supposons la propriété P (n) vraie pour un entier n donné et montrons que
P (n+ 1) est vraie.

On a : Z m = +1’ en ajoutant m au deux membres on obtient :
Z + ! 1 ! + ! soit
= 1-— , soit :
—~k(k+1) (n+1)(n+2) n+l (n+1)(n+2)
n+1 1 1
Sy - |
k:k‘—l—l n+l (n+1)(n+2)
) . 1 1 _ (n+2)-1 n+1 1
D’autre part on a : l—n—+1+m—1—m—1 e = =1-5.
n+1
On a donc : Z m =1- n+2’ donc la propriété P (n + 1) est vraie.
k=1

Conclusion : la propriété P (n) est initialisée & n = 1 et héréditaire donc, d’aprés le principe
de récurrence, P (n) est vraie pour tout entier naturel n supérieur ou égal a 1.

] * . a b a(k+1)+bk _ (a+b)k+a
2. Pour a et bréelset K € N* on a : T = RO = Rl
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Onaura%—l—k%l:mpourtoutkzeN*siaij:Oeta:lcequidonne
’azletb:—l.
Conclusion : VkEN*,m:%—#l.
On écrit :
1 1 1
k= =-—=
1(14+1) 1 2
1 1 1
k= =—-—=
2(2+1) 2 3
1 1 1
k= n: ———=—

nin+1) n n+1
En ajoutant membres & membres et aprés simplifications on obtient :

- 1 1
*NT - .
V”GN’;k(/Hl) .

Comme la suite (%) tend vers Oon a: lim z, = 1.

+1 n—-+o00
2
L Ungl (2n+2)! 22n(p))2 _ (2n+2)! 22n n!
Pour tout n > 1 ona: == = Err)® < e = el X e X\ e )

On a (2n+2)l = (2n)! x 2n+1) x 2n+2) et (n+1)! = nl x (n+1), don == =
2n+2)(2n+1) _ 2n+1

4n+1)2 T 2(m41)”
strictement positifs elle est strictement décroissante.

Comme 2n + 1 < 2n 4+ 2, on a “ < 1. La suite (u,) étant a termes

Comme elle est minorée par 0 elle est convergente.

Premiére méthode.

1. a. Soit la propriété P (n) : "u, < 07.

P (0) est vraie. Si elle est vraie pour un entier naturel n donné on a : u, <0 —= —u, >
0 = 3 —u, >0, donc 3%% > 0 et multipliant les deux membres par u, < 0 on obtient
iLu’ln < 0, s0it u, 1 < 0 et donc P (n+ 1) est vraie.

D’apres le principe de récurrence, la propriété P (n) est vraie pour tout entier naturel n.

. ~1 , .
b. Pour tout entier naturel n on a wu,,1 — u, = SZEJ — Uy = % Le dénominateur
n n

est strictement positif et . u, (u, — 1) > 0 (car u, < 0) donc u, 1 — u, > 0.
La suite (u,) est donc croissante. Comme elle est majorée (par 0) elle est convergente.

Soit [ sa limite. En passant & la limite dans u,,; = 32_“: il vient : [ = 32—_ll ce qui équivaut a
n

1(I—1)=0,soit I =0 oul=1. La suite (u,) é¢tant & termes négatifs, on a [ < 0 donc [l = 0]
Deuxiéme méthode.

2un,

. Un+1 —
2. a. Pour tout entier naturel n on a v, = =2um = 3(123’11 ik
1 - U/n+1 1_37un n

On a donc : Vn € N* v, = % X Up. (v,) est donc une suite géométrique de raison %
b. Comme % € ]-1,1[on a : limv, = 0.

u
D’autre part, pour tout entier naturel n on a : v, = 7 = v, — U, = U, =
Up (1 4+ vy,) = vy, soit u, = T (on a v, # —1 pour tout n).
Comme (v,,) 0 on en déduit que (u,) — 0.
Troisiéme méthode.
3. a. Pour tout entier naturel n : |u,41| = ‘32_“; = )3_2Un X |t ].
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Comme u,, <0ona3—u, >3, donc )< 1 < 2

— 3—un
On a donc : .

b. Par un raisonnement en cascade ou par récurrence on en déduit que : Vn € N, |u,| <

2 X |ug| pour k = 0,1,...,n — 1 et les multiplier

<

wlnN

(%)n X |ug| (écrire les inégalités |ujy1| <

memebres & membres).
On a donc Vn € N,0 < |u,| < 2(%)". D’apreés le théoréme de I'étau |u,| — 0 (car

2(2)" — 0) donc | (u,) — 0|,

1. Pour tout entienr naturel non nul n» on a : v,y — v, = ﬁ > 0 donc la
suite (v,) est (strictement) croissante. De méme w1 — w, = Vpy1 — U, + = il)z — #, soit
2,2 _ 3 o o .
Wpy1 — Wy = w + W — # —n *”Tg‘(;i)l)g"“) = n’;(ni’;); < 0 donc la suite (w,) est
(strictement) décroissante.
De pluson a: n € N, w, —v, = ﬁ qui tend vers 0 donc les suites (v,) et (w,) sont

adjacentes. Il en résulte que la suite (v,) (et (w,)) est convergente. Soit [ = lim v,,.

Pour tout n € N* on a donc u, < | < w, donc |v, — | < |w, — v,| = %. De méme on a
lw, — 1| < 5.

2. D’apres les inégalités précédentes, pour avoir |v, — 1] < 107° et |w, — 1| < 107°4l suffit
d’avoir &5 < 1075 soit n? > 10° ou (a la calculatrice).

1. Soit P (n) la propriété "n! > n?".

P (4) est vraie car 4! = 24 et 4% = 16.

Supposons que la propriété P (n) soit vraie pour un entier donné n > 4.

On a n! > n? donc (n+1)n! > (n+ 1) n? soit (n+ 1)! > (n+ 1) n>

Pour que (n +1)! > (n+ 1)% il suffit que (n +1)n2 > (n+ 1)? ce qui équivaut a n? > n+1
ce qui est vrai (signe du trinome X2 — X — 1) donc on a bien (n+1)! > (n+1)* et P (n+1)
est vraie.

Conclusion : on a n! > n? pour n > 4.

La série Z% est & termes positifs et % < 3 pour n > 4 terme général d’une série

n>0

1
convergente (série de Riemann Z —avec a = 2 > 1) donc elle est convergente.
na

11 1 !
2. Soit P (n) la propriété "e=1+ —+ —+ ...+ — + | wrerdu.
1 2! n!  nljy

La propriété P (0) est vraie carona: 1+e fol e tdu=1+e [—e_”](l) =l+e[—et+1]=ce

Supposons que la propriété P (n) soit vraie pour un entier donné n. On a donc e = 14+ — +

1!
1 1 e [t
—+.. ..+ =+ =[] ule"du.
2! n! " nl/y
1 u
Intégrons / u"e “du par parties en posant U = e, U' = —e et V' =u", V = 1
0 n

; w1t 1t 1 1!
donc [, u"e "du = [e‘“ n J + n 1/ e vy du = et 1 + n 1/ e~ “u"du, d’on
n o 0 n n 0

1+1
n+1l n+1

! 11
/e“u"“du},soitemzl—i———f———i—...—l—
0

1 1 1 1 e .
e= +—+—+...+a+a e T

1 2!
1 L e
(n+1)! (n+1

1
>‘/ u"e "du, donc P (n + 1) est vraie.
*Jo
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La propriété P (n) est donc vraie pour tout entier naturel n.
“1 , N 1 e [t . .,
Posons S,, = kz o (somme partielle de la série ZO m) On adonc S, =e— A ue "du.
=0 n=z

1 1
Pour w € [0,1] on a 0 < w"e™ < 1 donc 0 < /u”e‘“du < /du =1, dou 0 <
0 0

1

e e
— | u"eUdu < —.
n! Jo n!
e [
Il en résulte (d’aprés le théoréme de I'étau) que la suite — / u™e "du converge vers 0 donc
n! Jo
+0o0
: o 1
lim S, = e ce qui s’écrit : E — =el|
n—+oo 0 TL!
n=

n—+1 e .
a. On a — 1 donc la série diverge car son terme général ne tend pas vers
n n—-+oo
0;

. 1 . . 1 1 "y : .
b. La série E est a termes positifs et ~ — terme général d'une série
n3—n nd—n n?
n>2

1
convergente (série de Riemann g —avec a = 2 > 1) donc elle est convergente.
n
n

1"
c. la série ; on ~|—(1) ()Qn 3 n’est pas a termes positifs; voyons si elle est absolument

1 . , -
~ — terme général d'une série

te :
convergente : on a 2n+1)(2n+3)  4n?

(=1)" _ 1
@n+U@n+@‘_

(=1)"
(2n+1) (2n + 3)

d. Pour z € [k, k + 1] onak§x§k+1donc\/ES\/ES\/k‘leetenintégrant de k a
E+1 n
k—+1 on obtient : \/Eg/ Vadr < +k+ 1. En sommant de k¥ = 0 a n on obtient : Z\/Eg
k

k=0

convergente donc la série E est absolument convergente donc convergente;
>1

n

n+1 n n n 41
/ Vxdr < Z vk + 1. Cet encadrement s’écrit / Vadr < Z VE < / Vrdr;
0 k=0 0 k=0 0

e. La série est & termes positifs et on a 0 < arctann < g, donc 0 < ‘“C;# < %n—g Comme
arctann

# est le terme général d’une série convergente, la série E o, converge;
n
n>1
f. Effectuons le dl du terme général. On a, au voisinage de 0, tanx = z + o(z?) et
S 2 2)  wn (1) 1 1 . P .
Sim:c =z + o(z?), donc tan (n) sin (n) ==-+4o0 (nz), donc le terme général est équivalent &
-, terme général d'un série divergente, donc la série est divergente;
(1+n)sinn<(1+n) (14 n) " L
< ,on a ~ =5 = 73732
n2y/n n2y/n’ n2y/n n?yn - nd/
terme général d’une série convergente, donc la série converge;
h. Ici la série n’est pas & termes positifs donc on regarde si elle est absolument convergente.

g. La série est a terms positifs et on a

-1)"/n n n’\/n ) 5 . n%/n
On a # = \/—n_ D’autre part on a \n/_ = e2lantgylnn—n _ oylnn—n gnit \n/_ =
e e e e
2
5,(lnn_ n n n L, L.
62"( n 1); comme 1“7” — 0, on a —\n/_ — 0 donc \/—n_ =0 (n—g), terme général d’une série
e

e
convergente, donc la série est absolument convergente, donc convergente.
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(n+1)>?. 1 en résulte que

Wi

Comme /\/Ed:p = 22%2 on obtient 2n*? < Z\/E <
k=0

Z\/_
— —— 1 donc Z\/_N 2p3/2,

3/2
3n

ﬁ+f+..‘+\/ﬁ 21

—————. (Cest le terme d’une série convergente ssi
ne 3 no—3/2

On a donc

3>1s0't >5
o — — it a > —.
2 2

La série étant a termes positifs, elle converge ssi a > 5

1. Por k<t <k+1lonavk <Vi<Vk+ I(car z — /x est croissante sur R, ).

k+1
En intégrant membres & membres entre k£ et k + 1 on obtient : VEk < Vredr <Vk+1)|
k

En sommant ces inégalités de 1 & n et grace a la relation de Chasles pour les intégrales on
n+1

a:V1i+vV2+... +yn< Vade < V2 +V3+ . +vn+ L
1
n n+1
Cet encadrement peut s’écrire / Vader+1 < V1+ \/§+...+\/ﬁ§ / Vadx pour tout
1 1

entier naturel n. Comme /\/de = §x3/2 on obtient % (n3/2 — 1) +1<VI+HV2+... +yn<

%[(n—i—l)s/z—l].

En divisant les trois membres par £ 22/3 le premier et troisiétme membre tendent vers 1 donc,
d’apres le théoreme de ’étau, W — 1soit [VI+vV2+...+yn~ 2 23,
3n

2 On a une série a termes positifs et son terme général est équivalent d’apres 1/ a £ A

3 no‘
2L Or la série de terme général —— converge sii @ — 2 > 1 (série de Riemann) donc la
3 n 73

VI+V2+..+vn

série
n>1

Pour tout n € N tel que n > 2, ona2—e >0 doncln (2 — e_%> > (0 pour > 1 donc

la série est & terme positifs.
Or, au voisinage de 0, ¢! =1+t + o (¢).

Donc, ew=1-— % +o (%) au voisinage de l'infini et In (2 —e n) In (1 + = Lo ( ))
On a donc In (2 — e%) ~ .

converge ss1 o > g

La série ) © ¢tant divergente (série harmonique) on en déduit que la série Y In (2 — e%>

diverge vers +oc.
1. La fonction f est dérivable sur [0, 1] (produit de fonctions dérivables) et

Vo e [0,1], f' (z) =2¢" (z+1).

On a donc : Vx € [0,1], f'(x) > 0 donc f est strictement croissante sur [0,1].f étant
continue c’est donc une bijection de [0, 1] sur [f (0), f (1)] = [0, 2¢].

La bijection réciproque f~! de f est une bijection de [0, 2¢] dans [0, 1], continue, strictement
croissante.
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2. L’¢équation ze®” = 1 est équivalente & f (z) = 2. Comme 2 € [0, 2¢], cette équation a une
unique solution « dans [0, 1] (I’antécédent de 2 par f).

Comme f (0) et f (1) sont différents de 2 on a « € ]0, 1].
3. Récurrence sur n. Soit la propriété P (n) : 70 < u, < 17.
Elle est vraie pour n = 0 d’aprés 2/.

Supposons P, vraie pour un certain entier n : 0 < u, < 1. La fonction f~! étant une
application strictement croissante de [0, 2¢] dans [0,1] on a : f~!(z) € ]0,1[ pour = € ]0,2¢|
donc f7! (u,) €]0,1] soit 0 < u,4; < 1 et la propriété est vraie au rang n + 1.

Conclusion : la propriété P, est vraie pour tout entier naturel n.

4. Ona: Vr e [0,1],f(x) —2 =x(2¢" —1). Pour z > 0on ae”>1donc2”—1>0
d’ou f () —x > 0 pour tout z € [0, 1].

On a f(x) —x = 0ssi x(2¢" —1) = 0. Comme 2¢” — 1 # 0 sur [0, 1] c’est équivalent a
x=0.

En remplagant = par u, dans l'inégalité f(x) > z (possible car w, € [0,1]) on obtient
f (u,) > u,, et en prenant I'image par f~! (croissante) il vient u, > f~ (u,) = u,11 . La suite
(uy) est décroissante.

5. Comme elle décroissante et minorée (par 0) elle est donc convergente.

Sa limite [ vérifie f~ (I) = [ (car f~! continue en ) soit f (I) = [ en composant par f, donc
[ = 0 d’apres la question précédente.

1. La représentation graphique classique donne un "escalier qui descend" : on conjec-
ture que la suite (u,,) est tend vers 0 en décroissant.

2
De plus on a f'(z) = M donc f est croissante sur [0, 1].

On montre d’abord par récurrence que pout tout n on a P(n): 0 < u, < 1.

La propriété est vraie au rang 0. Si elle est vraie pour un entier n donnéona: 0 < u, <1
donc f(0) < f(un) < f(1) (car f croissante sur [0,1]) donc 0 < u,11 <1/3<1let P(n+1)
est vraie.

On adonc: Vn e N0 <u, <1.

De plus, pour tout entier naturel n, on a “u:1 == Jﬂlm 7 <1 (car u, > 0) donc la suite
(un) est (strictement) décroissante car a termes > 0. Comme elle est minorée par 0 elle est
convergente. Sil est sa limite on obtient par passage a la limite : | = ﬁ soit [ (I +1+1)=1
ce qui équivaut a [? (I + 1) = 0, dont les solutions sont [ = 0 ou [ = —1. Comme (u,) est une
suite a termes positifs on a [ > 0 donc finalement .

2. Pour tout entier naturel non nul p on a : f (%) = (1/p)2‘1ﬁ/p+1 = 1+zf)+p2 < ppr (car

1+p+p*>p+p? SOitf(%) < -

3. Soit, la propriété P (n) : 70 < u, < =5". P(0) est vraie car up = 1 < 1.

Si elle est vraie pour un entier n donné on a : 0 < u, < n+r1 donc f(0) < f(u,) < f (n%l)
(car f croissante sur [0, 1]) et comme f ( L ) < -1 (question précédente) on a 0 < 41 < #2

. 1) S i
et P(n+ 1) est vraie.

On a donc : |Vn € N*, 0 < u, <

1
n+1 [

D’apreés le théoréme de 1’étau on retrouve que la suite (u,) tend vers 0.

4. Soit la propriété P (n) : i <n+1+ Z . P (1) est vraie car u; = 3.
k=1
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Supposons qu’elle soit vraie pour un entier n donné. On a —— = un—}—l—}—uin et u, < n+r1 (2/)

Un+1 -
n n n+1
et t < n+1+2% (hypothése de récurrence) donc unlﬂ < %H—l—H—n—{—l—i—Z% = n+2—|—2%
k=1 k=1 k=1

et P(n+1) est vraie.

La propriété P (n) est donc vraie pour tout entier naturel n > 1.
k

5. En sommant les inégalités % < /

n n
dfpourk:2anilvient: g %S/ df:lnndonc
k—1 P 1

3

< 1+Inn pour n > 2. D’apres la question précédente on a donc|Vn > 2, 1% <n+2+Inn|

n T

=

k=1

On en déduit que u,, > pour n > 2 et d’aprés la question 3/ on obtient I’encadrement

1
n+2+Inn

1 1
) Sty < ——— 7.
n+1 n+2+Inn
o . . . n n : n _ n — 1
En mulitipliant par n : g S U < Or lim i = let o wu el sy e ey
In

(car 2 — 0) donc, d’aprés le théoréme de I'étau : limnu, = 1 soit lim {7 = 1 ou encore

Vn > 2

— 1

1
Up ~ = |
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