EF1 Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) + f(x-y) = 2[f(x) + f(y)] (*).$$

- **1.** Soit $f \in E$. Montrer que f(0) = 0 et que f est paire.
- **2. a.** Soit x un réel. Montrer par récurrence que pour tout entier naturel n on a :

$$f\left(nx\right) = n^2 f\left(x\right).$$

b. On pose f(1) = a.

x.

Montrer que pour tout entier relatif n on a : $f(n) = an^2$.

- **c.** Calculer $f\left(\frac{1}{n}\right)$ pour $n \in \mathbb{N}^*$. En déduire que $f\left(x\right) = ax^2$ pour tout nombre rationnel
- **d.** Trouver toutes les fonctions *continues* de \mathbb{R} dans \mathbb{R} vérifiant (*) (indication : on pourra utiliser que \mathbb{Q} est dense dans \mathbb{R}).
 - **3.** Soit g une fonction continue sur \mathbb{R} vérifiant

$$\forall (x, y) \in \mathbb{R}^2, g(x + y) . g(x - y) = [g(x) g(y)]^2 (**).$$

- **a.** Montrer que $(\forall x \in \mathbb{R}, g(x) \ge 0)$ ou $(\forall x \in \mathbb{R}, g(x) \le 0)$.
- **b.** Trouver toutes les fonction g continues ne s'annulant pas sur \mathbb{R} vérifiant (**).[ex6.2014]

<u>Correction</u>: **1.** En prenant x = y = 0 dans (*) on obtient: 2f(0) = 4f(0), soit f(0) = 0. En prenant x = 0 et y quelconque: f(y) + f(-y) = 2[f(0) + f(y)] = 2f(y), soit f(-y) = f(y), donc la fonction f est paire.

2. a. Soit P(n) la propriété " $\forall x \in \mathbb{R}, f(nx) = n^2 f(x)$ ". Montrons que cette propriété est vraie pour tout n en utilisant une récurrence forte.

La propriété est vraie pour n = 0 et n = 1.

Soit n un entier naturel fixé $n \ge 1$ et supposons la propriété P(k) vraie pour k = 0, 1, ..., n. Pour tout réel x on a : f((n+1)x) = f(nx+x) = 2[f(nx)+f(x)] - f(nx-x) (d'après (*) en remplaçant x et y par nx et x respectivement). Comme P(n) et P(n-1) sont vraies on a $f(nx) = n^2 f(x)$ et $f(nx-x) = f((n-1)x) = (n-1)^2 f(x)$ d'où :

$$f((n+1)x) = 2[n^{2}f(x) + f(x)] - (n-1)^{2}f(x)$$

$$= [2n^{2} + 2 - (n-1)^{2}]f(x)$$

$$= [n^{2} + 1 + 2n]f(x) = (n+1)^{2}f(x).$$

La propriété P(n+1) est donc vraie.

D'après le principe de "récurrence forte" la propriété P(n) est vraie pour tout entier naturel n.

b. En posant x=1 dans la relation précédente on obtient :

$$\forall n \in \mathbb{N}, f(n) = an^2$$

Si $n \in \mathbb{Z}^-$, on a $-n \in \mathbb{N}$, donc $f(-n) = a(-n)^2 = an^2$, et comme f est paire, $f(n) = an^2$. Conclusion: $\forall n \in \mathbb{Z}, f(n) = an^2$.

c. Pour tout $n \in \mathbb{N}^*$ on a $f(n \times 1/n) = f(1) = a$, d'une part, et d'autre part, d'après 2/a/n, $f(n \times 1/n) = n^2 f(1/n)$ (en prenant x = 1/n), soit $a = n^2 f(1/n)$ donc $f(1/n) = a/n^2$.

Soit $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$. On a , $f\left(\frac{p}{q}\right) = f\left(p \times \frac{1}{q}\right) = p^2 f\left(\frac{1}{q}\right)$ (2/a/ avec x = 1/q) soit $f\left(\frac{p}{q}\right) = p^2 \frac{a}{q^2}$ (d'après la relation précédente). On a donc $f\left(x\right) = ax^2$ pour tout rationnel positif x.

Comme en b/ on en déduit, en utilisant la parité, de f que $\forall x \in \mathbb{Q}, f(x) = ax^2$

d. Soit x un réel. Comme \mathbb{Q} est dense dans \mathbb{R} il existe une suite de rationnels (r_n) qui converge vers x. Pour tout entier n on a $f(r_n) = ar_n^2$ (d'après 2/c/). Or $ar_n \longrightarrow ax$ et $f(r_n) \longrightarrow f(x)$ (car f est continue en x). En passant l'égalité $f(r_n) = ar_n^2$ à la limite quand n tend vers $+\infty$, on obtient $f(x) = ax^2$.

Réciproquement (synthèse) : les fonctions $x \longmapsto ax^2$ sont continue sur \mathbb{R} et vérifient (*).

Conclusion: l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} vérifiant (*) est $\{x \longmapsto ax^2/a \in \mathbb{R}\}$.

- **3.** a. En prenant x = y dans (**) il vient : $\forall x \in \mathbb{R}, g(2x) \times g(0) = g(x)^4 \ge 0$, donc :
- si g(0) = 0 alors g(x) = 0 pour tout réel x;
- si g(0) > 0 alors on a $g(2x) \ge 0$ pour tout réel x;
- si g(0) < 0 alors on a $g(2x) \le 0$ pour tout réel x.

Conclusion: on a $(\forall x \in \mathbb{R}, g(x) \ge 0)$ ou $(\forall x \in \mathbb{R}, g(x) \le 0)$.

b. Supposons par exemple que $\forall x \in \mathbb{R}, g(x) > 0$. En prenant le ln des deux membres de (**) on obtient la relation équivalente $\ln g(x+y) + \ln g(x-y) = 2 [\ln g(x) + \ln g(y)]$, i.e. la fonction $\ln g$ vérifie (*). D'après 2/ c'est équivalent à : $\exists a \in \mathbb{R}/\forall x \in \mathbb{R}, \ln g(x) = ax^2$, soit $g(x) = e^{ax^2}$.

Si $\forall x \in \mathbb{R}, g(x) < 0, -g$ vérifie (**), soit $g(x) = -e^{ax^2}$.

Finalement l'ensemble des fonction g continues et ne s'annulant pas sur \mathbb{R} vérifiant (**) est $\left\{x \longmapsto \pm e^{ax^2}\right\}$.