$\boxed{\mathbf{SF3}}$ Soit $(u_n)_{n\geq 1}$ une suite de nombres réels. On lui associe la suite (p_n) définie pour tout entier naturel non nul n par :

$$p_n = \prod_{k=1}^n u_k = u_1.u_2...u_n. \tag{1}$$

Lorsque (p_n) converge, on note p sa limite.

Partie A

- 1. Donner un exemple de suite (u_n) telle que (p_n) converge vers 0.
- **2.** On suppose que la suite (p_n) converge vers un réel non nul l.

En considérant le quotient $\frac{p_{n+1}}{p_n}$ montrer que la suite (u_n) converge vers 1.

3. On pose $u_n = 1 + \frac{1}{n}$. Calculer p_n pour $n \in \mathbb{N}^*$.

La réciproque de la propriété de la question 2/ est-elle vraie ?

- **4.** On suppose dans cette question que $u_n > 0$ pour tout entier naturel $n \ge 1$.
- a. Montrer que (p_n) converge vers un réel p strictement positif ssi la série $\sum_{n\geq 1} \ln{(u_n)}$ converge.
- **b.** On suppose que $\sum_{n\geq 1} \ln(u_n)$ diverge vers $+\infty$ ou $-\infty$. Préciser dans ces deux cas la limite p de la suite (p_n) .

Dans la suite on pose $u_n = 1 + x_n$.

- **5.** On suppose dans cette question que $x_n \geq 0$ pour $n \in \mathbb{N}^*$.
- **a.** Montrer que si la suite (p_n) est convergente vers p > 0, on a $\ln u_n \sim x_n$. En déduire que la série $\sum_{n \ge 1} x_n$ est convergente.
 - **b.** Réciproquement supposons que la série $\sum_{n\geq 1} x_n$ soit convergente.

Que peut-on dire de son terme général x_n ?

Montrer que la suite (p_n) converge vers un réel p > 0.

6. On suppose que la suite (p_n) tend vers $p \in]0, +\infty[\cup \{+\infty\}.$

Montrer que la série $\sum_{n\geq 1} \frac{x_n}{(1+x_1)(1+x_2)...(1+x_n)}$ est convergente et calculer sa limite.

(on pourra faire apparaître une série "téléscopique").

Partie B

Pour répondre aux questions suivantes on pourra utiliser les questions de la partie A à condition de s'y référer de façon très précise.

- 7. Etudier la limite de la suite (p_n) dans les cas suivants :
 - **a.** $u_n = 1 + \frac{1}{2^n};$
- **b.** $u_n = 1 + \frac{1}{\sqrt{n}}$.
- **8. a.** Etudier le sens de variation de la fonction $\varphi: x \longmapsto \frac{\ln x}{x^2}$ sur l'intervalle $[2, +\infty[$.
 - **b.** Montrer que pour tout entier naturel k supérieur ou égal à 2 on a :

$$\frac{\ln(k+1)}{(k+1)^2} \le \int_{k}^{k+1} \frac{\ln t}{t^2} dt.$$

- **c.** Calculer un primitive de φ sur \mathbb{R}_+^* .
- **d.** En déduire une majoration de $\sum_{k=3}^{n} \frac{\ln k}{k^2}$ puis la nature de la série $\sum_{n\geq 2} \frac{\ln n}{n^2}$.
- e. En déduire la convergence de la suite (p_n) lorsque $u_n = n^{1/n^2}$.
- **9.** Dans cette question on pose $u_n = 1 + a^{2^n}$ où a est un réel de l'intervalle]0,1[. On a donc

$$p_n = \prod_{k=1}^n \left(1 + a^{2^k} \right).$$

a. Montrer que : $\forall n \in \mathbb{N}^*, a^{2^n} \leq a^n$.

En déduire la nature de la série $\sum_{n\geq 1} a^{2^n}$.

- **b.** Montrer que la suite (p_n) est convergente.
- **c.** Montrer que pour tout entier n supérieur ou égal à 1 on a :

$$(1 - a^2) p_n = 1 - a^{2^{n+1}}.$$

En déduire la valeur de la limite de la suite (p_n) .

10. Montrer que la série $\sum_{n\geq 1} \frac{1}{n\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\dots\left(1+\frac{1}{n}\right)}$ est convergente et calculer sa somme.

Correction: Partie A

- **1.** Si $u_n = \frac{1}{2}$ pour $n \in \mathbb{N}^*$, on a $p_n = \frac{1}{2^n}$ qui tend vers 0.
- **2.** Comme $(p_n) \longrightarrow l$ on a aussi $(p_{n+1}) \longrightarrow l$ (suite extraite de (p_n)), donc $\frac{p_{n+1}}{p_n} \longrightarrow 1$ (car $l \neq 0$). D'autre part, pour $n \in \mathbb{N}^*$, on a $\frac{p_{n+1}}{p_n} = \frac{u_1.u_2...u_n.u_{n+1}}{u_1.u_2...u_n} = u_{n+1}$, donc la suite (u_{n+1}) converge vers 1, soit $\lim u_n = 1$.
 - **3.** Pour $n \in \mathbb{N}^*$ on a $u_n = \frac{n+1}{n}$, donc $p_n = \frac{1}{2} \times \frac{2}{3} \times \ldots \times \frac{n+1}{n} = n+1$ après simplifications. On a $\lim u_n = 1$ et $\lim p_n = +\infty$: la réciproque du 2/ est donc fausse.
 - **4. a.** Pour tout réel $n \in \mathbb{N}^*$ on a $S_n = \sum_{k=1}^n \ln(u_k) = \ln\left(\prod_{k=1}^n u_k\right) = \ln p_n$.

On a donc : (p_n) converge vers p > 0 ssi la suite $(\ln p_n)$ converge ssi (S_n) converge, ce qui équivaut à dire que la série $\sum_{n \ge 1} \ln u_n$ est convergente.

b. Avec les notations précédentes, si $\sum_{n=1}^{+\infty} \ln(u_n) = +\infty$ on a $S_n \longrightarrow +\infty$, donc $\ln p_n \longrightarrow +\infty$, soit $p_n \longrightarrow +\infty$ $(p_n = e^{\ln p_n})$.

De même si $\sum_{n=1}^{+\infty} \ln(u_n) = -\infty$ on a $S_n \longrightarrow -\infty$, donc $\ln p_n \longrightarrow -\infty$, soit $p_n \longrightarrow 0$.

- **5. a.** Comme (p_n) converge vers p > 0 la série $\sum_{n \ge 1} \ln(u_n) = \sum_{n \ge 1} \ln(1 + x_n)$ converge (4/2)
- a/) donc $\ln(1+x_n) \longrightarrow 0$ donc $(x_n) \longrightarrow 0$.

Donc $\ln u_n = \ln (1 + x_n) \sim x_n$.

Les séries $\sum_{n\geq 1} x_n$ et $\sum_{n\geq 1} \ln(1+x_n)$ étant à termes positifs, elles sont donc de même nature.

Comme $\sum_{n\geq 1} \ln (1+x_n)$ converge, il en est de même pour $\sum_{n\geq 1} x_n$.

b. La série $\sum x_n$ est convergente donc son terme général x_n tend vers 0, donc $\ln(1+x_n) \sim$ x_n . Comme précédemment les séries $\sum_{n\geq 1} x_n$ et $\sum_{n\geq 1} \ln{(1+x_n)}$ sont de même nature, donc la série $\sum_{n\geq 1} \ln(1+x_n)$ est convergente, soit la suite (p_n) converge vers un réel p>0 (4/a/).

6. On écrit, pour $n \ge 2$, $\frac{x_n}{(1+x_1)(1+x_2)...(1+x_n)} = \frac{1+x_n-1}{(1+x_1)(1+x_2)...(1+x_n)} = y_{n-1} - y_n$ avec $y_n = \frac{1+x_n-1}{(1+x_n)(1+x_n)} = \frac{$ $\frac{1}{(1+x_1)(1+x_2)\dots(1+x_n)} = \frac{1}{p_n}. \text{ On a donc } S_n = \sum_{k=1}^n \frac{x_k}{(1+x_1)(1+x_2)\dots(1+x_k)} = \frac{x_1}{1+x_1} + \sum_{k=2}^n (y_{k-1} - y_k), \text{ soit } S_n = \frac{x_1}{1+x_1} + (y_1 - y_2 + y_2 - y_3 + \dots + y_{n-1} - y_n) = \frac{x_1}{1+x_1} + y_1 - y_n = 1 - y_n.$ $\text{Comme } (y_n) \longrightarrow \frac{1}{p}, \text{ alors } S_n \longrightarrow 1 - \frac{1}{p}.$

La série $\sum_{n\geq 1} \frac{x_n}{(1+x_1)(1+x_2)...(1+x_n)}$ est donc convergente et sa somme vaut $1-\frac{1}{p}$ (1 si $p=+\infty$).

7. a. La série $\sum_{n>1} \frac{1}{2^n}$ est convergente (série géométrique de raison $\frac{1}{2}$) donc la suite (p_n) est convergente d'après 5/b/

b. On a $\ln\left(1+\frac{1}{\sqrt{n}}\right)\sim\frac{1}{\sqrt{n}}$, terme général d'une série divergente (série de Riemann avec $\alpha = \frac{1}{2}$). Les séries $\sum_{n>1} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$ et $\sum_{n>1} \frac{1}{\sqrt{n}}$ étant à termes positifs, elles sont donc divergentes (vers $+\infty$). D'après 4/b la suite (p_n) diverge vers $+\infty$.

8. a. La fonction φ est dérivable sur $[2, +\infty[$ (quotient de fonctions dérivables) et $\varphi'(x) =$ $\frac{x-2x\ln x}{x^4}$, du signe de $x-2x\ln x=x\left(1-2\ln x\right)$. Comme $1-2\ln x\leq 0$ pour $x\geq 2$, la fonction φ est décroissante sur $[2,+\infty[.$

b. Pour $2 \le k \le t \le k+1$ on a $\frac{\ln(k+1)}{(k+1)^2} \le \varphi(t) \le \frac{\ln k}{k^2}$ d'après 8/ a/, donc, en intégrant entre k et k+1, $\frac{\ln(k+1)}{(k+1)^2} \le \int_{k}^{k+1} \frac{\ln t}{t^2} dt \le \frac{\ln k}{k^2}$, donc $\left| \frac{\ln(k+1)}{(k+1)^2} \le \int_{k}^{k+1} \frac{\ln t}{t^2} dt \right|$ pour $k \ge 2$.

c. On intègre φ par parties en posant $u = \ln x$ et $v' = \frac{1}{x^2}$, soit $u' = \frac{1}{x}$, $v = -\frac{1}{x}$ d'où $-\frac{\ln x}{x} + \int \frac{dx}{x^2} = -\frac{\ln x}{x} - \frac{1}{x}$, soit $\int \frac{\ln x}{x^2} dx = -\frac{1 + \ln x}{x}$

d. D'après 8/b/ on a $\frac{\ln k}{k^2} \le \int_{t-1}^{k} \frac{\ln t}{t^2}$ pour $k \ge 3$, et en sommant de k = 3 à n on obtient :

 $\sum_{k=2}^{n} \frac{\ln k}{k^2} \le \int_{2}^{n} \frac{\ln t}{t^2} dt, \text{ soit } \sum_{k=2}^{n} \frac{\ln k}{k^2} \le -\left[\frac{1+\ln x}{x}\right]_{2}^{n} = -\frac{1+\ln n}{n} + \frac{1+\ln 2}{2} \left(\frac{8}{c}\right), \text{ donc } \sum_{k=2}^{n} \frac{\ln k}{k^2} \le \frac{1+\ln 2}{2}.$

La suite $\sum \frac{\ln k}{k^2}$ est croissante et majorée, donc convergente. Il en résulte que la série

 $\sum_{n=0}^{\infty} \frac{\ln n}{n^2}$ est convergente.

e. Si $u_n = n^{1/n^2}$ on a $\ln u_n = \frac{\ln n}{n^2}$. La série $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ étant convergente, la suite (p_n)

converge versz un réel strictement positif d'après 4/ a/. **9. a.** Soit P_n la propriété " $a^{2^n} \le a^n$ ". On a P_1 : " $a^2 \le a$ " qui est vraie car $a \in]0,1[$.

Si P_n est vraie pour un entier fixé n on a : $a^{2^{n+1}} = (a^{2^n})^2 \le (a^n)^2$ (car P_n est vraie), soit $a^{2^{n+1}} \le a^{2n}$, et $2n \ge n+1$ donc $a^{2^{n+1}} \le a^{n+1}$ donc p_{n+1} est vraie.

D'après le principe de récurrence, la propriété P_n est vraie pour tout entier naturel $n \in \mathbb{N}^*$. On a La série $a^{2^n} \leq a^n$ pour $n \geq 1$ et a^n est le terme général d'une série convergente (série géométrique de raison $a \in]0,1[)$ donc la série $\sum_{n\geq 1} a^{2^n}$ est convergente.

- **b.** La série $\sum_{n\geq 1} a^{2^n}$ étant convergent la suite (p_n) est convergente d'après 5/ b/.
- **c.** La formule est vraie pour n=1.

Si elle est vraie pour un entier donné n on a : $(1-a^2) p_{n+1} = (1-a^2) p_n \times (1+a^{2^{n+1}})$,

soit $(1 - a^2) p_{n+1} = (1 - a^{2^{n+1}}) \times (1 + a^{2^{n+1}}) = 1 - (a^{2^{n+1}})^2 = 1 - a^{2^{n+2}}$, donc la formule est vraie pour n+1. Elle est donc vraie pour tout entier naturel $n \ge 1$. On a $0 \le a^{2^{n+1}} \le a^{n+1}$ (9/ a/) et $a^{n+1} \longrightarrow 0$ donc $a^{2^{n+1}} \longrightarrow 0$ (théorème de l'étau).

Comme $p_n = \frac{1-a^{2^{n+1}}}{1-a^2}$ (9/ c/) on a donc $\lim p_n = \frac{1}{1-a^2}$.

10. On a $\sum_{n\geq 1} \frac{1}{n\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)...\left(1+\frac{1}{n}\right)} = \sum_{n\geq 1} \frac{1/n}{\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)...\left(1+\frac{1}{n}\right)}$. La suite $p_n = \prod_{k=1}^{n} \left(1+\frac{1}{n}\right)$ tend

vers $+\infty$ (3/), donc la série $\sum_{n\geq 1} \frac{1}{n\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)...\left(1+\frac{1}{n}\right)}$ converge vers 1 d'après 6/.